These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22167688)

  • 21. Analysis of interdomain dynamics in a two-domain protein using residual dipolar couplings together with 15N relaxation data.
    Ryabov Y; Fushman D
    Magn Reson Chem; 2006 Jul; 44 Spec No():S143-51. PubMed ID: 16823894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.
    Lamley JM; Lougher MJ; Sass HJ; Rogowski M; Grzesiek S; Lewandowski JR
    Phys Chem Chem Phys; 2015 Sep; 17(34):21997-2008. PubMed ID: 26234369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast protein backbone NMR resonance assignment using the BATCH strategy.
    Brutscher B; Lescop E
    Methods Mol Biol; 2012; 831():407-28. PubMed ID: 22167685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applications of NMR and computational methodologies to study protein dynamics.
    Narayanan C; Bafna K; Roux LD; Agarwal PK; Doucet N
    Arch Biochem Biophys; 2017 Aug; 628():71-80. PubMed ID: 28483383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural dynamics of bio-macromolecules by NMR: the slowly relaxing local structure approach.
    Meirovitch E; Shapiro YE; Polimeno A; Freed JH
    Prog Nucl Magn Reson Spectrosc; 2010 May; 56(4):360-405. PubMed ID: 20625480
    [No Abstract]   [Full Text] [Related]  

  • 26. Highly automated protein backbone resonance assignment within a few hours: the "BATCH" strategy and software package.
    Lescop E; Brutscher B
    J Biomol NMR; 2009 May; 44(1):43-57. PubMed ID: 19367368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Unique and Simple Approach to Improve Sensitivity in
    Nguyen D; Lokesh GLR; Volk DE; Iwahara J
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28809801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic interpretation of protein dynamics from NMR relaxation measurements.
    Spyracopoulos L
    Protein Pept Lett; 2005 Apr; 12(3):235-40. PubMed ID: 15777271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations.
    Liu Q; Shi C; Yu L; Zhang L; Xiong Y; Tian C
    Biochem Biophys Res Commun; 2015 Feb; 457(3):467-72. PubMed ID: 25600810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes.
    Myint W; Cai Y; Schiffer CA; Ishima R
    J Biomol NMR; 2012 May; 53(1):13-23. PubMed ID: 22466935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated NMR determination of protein backbone dihedral angles from cross-correlated spin relaxation.
    Kloiber K; Schüler W; Konrat R
    J Biomol NMR; 2002 Apr; 22(4):349-63. PubMed ID: 12018482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The RCI server: rapid and accurate calculation of protein flexibility using chemical shifts.
    Berjanskii MV; Wishart DS
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W531-7. PubMed ID: 17485469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deriving quantitative dynamics information for proteins and RNAs using ROTDIF with a graphical user interface.
    Berlin K; Longhini A; Dayie TK; Fushman D
    J Biomol NMR; 2013 Dec; 57(4):333-52. PubMed ID: 24170368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing bias in the analysis of solution-state NMR data with dynamics detectors.
    Smith AA; Ernst M; Meier BH; Ferrage F
    J Chem Phys; 2019 Jul; 151(3):034102. PubMed ID: 31325945
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Narrowing the gap between experimental and computational determination of methyl group dynamics in proteins.
    Hoffmann F; Xue M; Schäfer LV; Mulder FAA
    Phys Chem Chem Phys; 2018 Oct; 20(38):24577-24590. PubMed ID: 30226234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors determining the reliable description of global tumbling parameters in solution NMR.
    Pawley NH; Gans JD; Nicholson LK
    J Biomol NMR; 2002 Nov; 24(3):215-29. PubMed ID: 12522309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of 15N-T1 relaxation rates in a perdeuterated protein by magic angle spinning solid-state nuclear magnetic resonance spectroscopy.
    Chevelkov V; Diehl A; Reif B
    J Chem Phys; 2008 Feb; 128(5):052316. PubMed ID: 18266433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interpretation of biomolecular NMR spin relaxation parameters.
    Reddy T; Rainey JK
    Biochem Cell Biol; 2010 Apr; 88(2):131-42. PubMed ID: 20453916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.
    Prompers JJ; Brüschweiler R
    J Am Chem Soc; 2002 Apr; 124(16):4522-34. PubMed ID: 11960483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple method to measure protein side-chain mobility using NMR chemical shifts.
    Berjanskii MV; Wishart DS
    J Am Chem Soc; 2013 Oct; 135(39):14536-9. PubMed ID: 24032347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.