These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22168254)

  • 1. Assessing potential nanoparticle release during nanocomposite shredding using direct-reading instruments.
    Raynor PC; Cebula JI; Spangenberger JS; Olson BA; Dasch JM; D'Arcy JB
    J Occup Environ Hyg; 2012; 9(1):1-13. PubMed ID: 22168254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparability of portable nanoparticle exposure monitors.
    Asbach C; Kaminski H; von Barany D; Kuhlbusch TA; Monz C; Dziurowitz N; Pelzer J; Vossen K; Berlin K; Dietrich S; Götz U; Kiesling HJ; Schierl R; Dahmann D
    Ann Occup Hyg; 2012 Jul; 56(5):606-21. PubMed ID: 22752099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.
    Shepard MN; Brenner S
    Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial and temporal variability of incidental nanoparticles in indoor workplaces: impact on the characterization of point source exposures.
    Niu J; Rasmussen PE; Magee R; Nilsson G
    Environ Sci Process Impacts; 2015 Jan; 17(1):98-109. PubMed ID: 25410705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum.
    Schneider T; Jensen KA
    Ann Occup Hyg; 2008 Jan; 52(1):23-34. PubMed ID: 18056087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing.
    Heitbrink WA; Evans DE; Ku BK; Maynard AD; Slavin TJ; Peters TM
    J Occup Environ Hyg; 2009 Jan; 6(1):19-31. PubMed ID: 18982535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.
    Fujitani Y; Kobayashi T; Arashidani K; Kunugita N; Suemura K
    J Occup Environ Hyg; 2008 Jun; 5(6):380-9. PubMed ID: 18401789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure assessment of workplaces manufacturing nanosized TiO2 and silver.
    Lee JH; Kwon M; Ji JH; Kang CS; Ahn KH; Han JH; Yu IJ
    Inhal Toxicol; 2011 Mar; 23(4):226-36. PubMed ID: 21456955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites.
    Boonruksa P; Bello D; Zhang J; Isaacs JA; Mead JL; Woskie SR
    Ann Occup Hyg; 2016 Jan; 60(1):40-55. PubMed ID: 26447230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements of ultrafine particle concentrations and size distribution in an iron foundry.
    Cheng YH; Chao YC; Wu CH; Tsai CJ; Uang SN; Shih TS
    J Hazard Mater; 2008 Oct; 158(1):124-30. PubMed ID: 18313211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of airborne nanoparticles present in industry of aluminum surface treatments.
    Santos RJ; Vieira MT
    J Occup Environ Hyg; 2017 Mar; 14(3):D29-D36. PubMed ID: 27801631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to manufactured nanostructured particles in an industrial pilot plant.
    Demou E; Peter P; Hellweg S
    Ann Occup Hyg; 2008 Nov; 52(8):695-706. PubMed ID: 18931382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility.
    Peters TM; Heitbrink WA; Evans DE; Slavin TJ; Maynard AD
    Ann Occup Hyg; 2006 Apr; 50(3):249-57. PubMed ID: 16361396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle emission and exposure during nanoparticle synthesis in research laboratories.
    Demou E; Stark WJ; Hellweg S
    Ann Occup Hyg; 2009 Nov; 53(8):829-38. PubMed ID: 19703918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles.
    Schmoll LH; Peters TM; O'Shaughnessy PT
    J Occup Environ Hyg; 2010 Sep; 7(9):535-45. PubMed ID: 20614365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and mapping of very fine particles in an engine machining and assembly facility.
    Heitbrink WA; Evans DE; Peters TM; Slavin TJ
    J Occup Environ Hyg; 2007 May; 4(5):341-51. PubMed ID: 17454502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Airborne Nanoparticle Loss in Sampling Tubing.
    Tsai CS
    J Occup Environ Hyg; 2015; 12(8):D161-7. PubMed ID: 25746064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.