These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22168447)

  • 1. Planning combinatorial disulfide cross-links for protein fold determination.
    Xiong F; Friedman AM; Bailey-Kellogg C
    BMC Bioinformatics; 2011 Nov; 12 Suppl 12(Suppl 12):S5. PubMed ID: 22168447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic cross-link analysis and experiment planning for high-throughput elucidation of protein structure.
    Ye X; O'Neil PK; Foster AN; Gajda MJ; Kosinski J; Kurowski MA; Bujnicki JM; Friedman AM; Bailey-Kellogg C
    Protein Sci; 2004 Dec; 13(12):3298-313. PubMed ID: 15557270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ProVal: a protein-scoring function for the selection of native and near-native folds.
    Berglund A; Head RD; Welsh EA; Marshall GR
    Proteins; 2004 Feb; 54(2):289-302. PubMed ID: 14696191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical evaluation of protein folds predicted by threading.
    Kinjo AR; Kidera A; Nakamura H; Nishikawa K
    Eur Biophys J; 2001; 30(1):1-10. PubMed ID: 11372527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blind testing of cross-linking/mass spectrometry hybrid methods in CASP11.
    Schneider M; Belsom A; Rappsilber J; Brock O
    Proteins; 2016 Sep; 84 Suppl 1(Suppl Suppl 1):152-63. PubMed ID: 26945814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combinatorial distance-constraint approach to predicting protein tertiary models from known secondary structure.
    Chelvanayagam G; Knecht L; Jenny T; Benner SA; Gonnet GH
    Fold Des; 1998; 3(3):149-60. PubMed ID: 9562545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SELECTpro: effective protein model selection using a structure-based energy function resistant to BLUNDERs.
    Randall A; Baldi P
    BMC Struct Biol; 2008 Dec; 8():52. PubMed ID: 19055744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein fold recognition by mapping predicted secondary structures.
    Russell RB; Copley RR; Barton GJ
    J Mol Biol; 1996 Jun; 259(3):349-65. PubMed ID: 8676374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using inferred residue contacts to distinguish between correct and incorrect protein models.
    Miller CS; Eisenberg D
    Bioinformatics; 2008 Jul; 24(14):1575-82. PubMed ID: 18511466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ISSEC: inferring contacts among protein secondary structure elements using deep object detection.
    Zhang Q; Zhu J; Ju F; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2020 Nov; 21(1):503. PubMed ID: 33153432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. eThread: a highly optimized machine learning-based approach to meta-threading and the modeling of protein tertiary structures.
    Brylinski M; Lingam D
    PLoS One; 2012; 7(11):e50200. PubMed ID: 23185577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW; Eisenberg D
    J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective inter-residue contact definitions for accurate protein fold recognition.
    Yuan C; Chen H; Kihara D
    BMC Bioinformatics; 2012 Nov; 13():292. PubMed ID: 23140471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic propensities of amino acids in the native state ensemble: implications for fold recognition.
    Wrabl JO; Larson SA; Hilser VJ
    Protein Sci; 2001 May; 10(5):1032-45. PubMed ID: 11316884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What are the baselines for protein fold recognition?
    McGuffin LJ; Bryson K; Jones DT
    Bioinformatics; 2001 Jan; 17(1):63-72. PubMed ID: 11222263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein structure prediction by threading methods: evaluation of current techniques.
    Lemer CM; Rooman MJ; Wodak SJ
    Proteins; 1995 Nov; 23(3):337-55. PubMed ID: 8710827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does inclusion of residue-residue contact information boost protein threading?
    Bhattacharya S; Bhattacharya D
    Proteins; 2019 Jul; 87(7):596-606. PubMed ID: 30882932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. diSBPred: A machine learning based approach for disulfide bond prediction.
    Mishra A; Kabir MWU; Hoque MT
    Comput Biol Chem; 2021 Apr; 91():107436. PubMed ID: 33550156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introducing a Clustering Step in a Consensus Approach for the Scoring of Protein-Protein Docking Models.
    Chermak E; De Donato R; Lensink MF; Petta A; Serra L; Scarano V; Cavallo L; Oliva R
    PLoS One; 2016; 11(11):e0166460. PubMed ID: 27846259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RFQAmodel: Random Forest Quality Assessment to identify a predicted protein structure in the correct fold.
    West CE; de Oliveira SHP; Deane CM
    PLoS One; 2019; 14(10):e0218149. PubMed ID: 31634369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.