BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 22168558)

  • 1. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The eMOSAIC model for humanoid robot control.
    Sugimoto N; Morimoto J; Hyon SH; Kawato M
    Neural Netw; 2012 May; 29-30():8-19. PubMed ID: 22366503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mosaic model for sensorimotor learning and control.
    Haruno M; Wolpert DM; Kawato M
    Neural Comput; 2001 Oct; 13(10):2201-20. PubMed ID: 11570996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of autonomous problem solving process by dynamic construction of task models in multiple tasks environment.
    Ohigashi Y; Omori T
    Neural Netw; 2006 Oct; 19(8):1169-80. PubMed ID: 16989982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.
    Kim SK; Kirchner EA; Stefes A; Kirchner F
    Sci Rep; 2017 Dec; 7(1):17562. PubMed ID: 29242555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement learning algorithms for robotic navigation in dynamic environments.
    Yen GG; Hickey TW
    ISA Trans; 2004 Apr; 43(2):217-30. PubMed ID: 15098582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coadaptive brain-machine interface via reinforcement learning.
    DiGiovanna J; Mahmoudi B; Fortes J; Principe JC; Sanchez JC
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):54-64. PubMed ID: 19224719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.
    Khamassi M; Enel P; Dominey PF; Procyk E
    Prog Brain Res; 2013; 202():441-64. PubMed ID: 23317844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes.
    Weel B; D'Angelo M; Haasdijk E; Eiben AE
    Artif Life; 2017; 23(1):80-104. PubMed ID: 28140628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning strategies in table tennis using inverse reinforcement learning.
    Muelling K; Boularias A; Mohler B; Schölkopf B; Peters J
    Biol Cybern; 2014 Oct; 108(5):603-19. PubMed ID: 24756167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular Nonlinear Networks for the emergence of perceptual states: application to robot navigation control.
    Arena P; De Fiore S; Patané L
    Neural Netw; 2009; 22(5-6):801-11. PubMed ID: 19596552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.
    Uchibe E; Doya K
    Neural Netw; 2008 Dec; 21(10):1447-55. PubMed ID: 19013054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online learning of shaping rewards in reinforcement learning.
    Grześ M; Kudenko D
    Neural Netw; 2010 May; 23(4):541-50. PubMed ID: 20116208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaussian Processes for Data-Efficient Learning in Robotics and Control.
    Deisenroth MP; Fox D; Rasmussen CE
    IEEE Trans Pattern Anal Mach Intell; 2015 Feb; 37(2):408-23. PubMed ID: 26353251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient exploration through active learning for value function approximation in reinforcement learning.
    Akiyama T; Hachiya H; Sugiyama M
    Neural Netw; 2010 Jun; 23(5):639-48. PubMed ID: 20080026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.