These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22168712)

  • 21. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models.
    Sakamaki R; Sum AK; Narumi T; Yasuoka K
    J Chem Phys; 2011 Mar; 134(12):124708. PubMed ID: 21456696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface tension of the most popular models of water by using the test-area simulation method.
    Vega C; de Miguel E
    J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of new Cd2+ and Pb2+ Lennard-Jones parameters for liquid simulations.
    de Araujo AS; Sonoda MT; Piro OE; Castellano EE
    J Phys Chem B; 2007 Mar; 111(9):2219-24. PubMed ID: 17291025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational investigation of order, structure, and dynamics in modified water models.
    Lynden-Bell RM; Debenedetti PG
    J Phys Chem B; 2005 Apr; 109(14):6527-34. PubMed ID: 16851733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonreactive molecular dynamics force field for crystalline hexahydro-1,3,5-trinitro-1,3,5 triazine.
    Boyd S; Gravelle M; Politzer P
    J Chem Phys; 2006 Mar; 124(10):104508. PubMed ID: 16542089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.
    Vega C; Abascal JL; Nezbeda I
    J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of flexibility on surface tension and coexisting densities of water.
    López-Lemus J; Chapela GA; Alejandre J
    J Chem Phys; 2008 May; 128(17):174703. PubMed ID: 18465932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum dynamical effects in liquid water: A semiclassical study on the diffusion and the infrared absorption spectrum.
    Liu J; Miller WH; Paesani F; Zhang W; Case DA
    J Chem Phys; 2009 Oct; 131(16):164509. PubMed ID: 19894958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A modified TIP3P water potential for simulation with Ewald summation.
    Price DJ; Brooks CL
    J Chem Phys; 2004 Nov; 121(20):10096-103. PubMed ID: 15549884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polar nanoregions in water: a study of the dielectric properties of TIP4P/2005, TIP4P/2005f and TTM3F.
    Elton DC; Fernández-Serra MV
    J Chem Phys; 2014 Mar; 140(12):124504. PubMed ID: 24697456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global potential energy minima of C60(H2O)n clusters.
    Hernández-Rojas J; Bretón J; Gomez Llorente JM; Wales DJ
    J Phys Chem B; 2006 Jul; 110(27):13357-62. PubMed ID: 16821854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical consideration of osmotic pressure in aqueous protein/salt systems based on extended hard core Lennard-Jones potential.
    Pai SJ; Bae YC
    J Chem Phys; 2010 Oct; 133(15):154104. PubMed ID: 20969367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A potential model for the study of ices and amorphous water: TIP4P/Ice.
    Abascal JL; Sanz E; García Fernández R; Vega C
    J Chem Phys; 2005 Jun; 122(23):234511. PubMed ID: 16008466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.
    Ramírez R; Herrero CP
    J Chem Phys; 2010 Oct; 133(14):144511. PubMed ID: 20950021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free-energy calculation of structure-H hydrates.
    Okano Y; Yasuoka K
    J Chem Phys; 2006 Jan; 124(2):024510. PubMed ID: 16422614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.
    Lin ST; Maiti PK; Goddard WA
    J Phys Chem B; 2010 Jun; 114(24):8191-8. PubMed ID: 20504009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ICFF: a new method to incorporate implicit flexibility into an internal coordinate force field.
    Katritch V; Totrov M; Abagyan R
    J Comput Chem; 2003 Jan; 24(2):254-65. PubMed ID: 12497604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modified Morse potential for unification of the pair interactions.
    Cheng L; Yang J
    J Chem Phys; 2007 Sep; 127(12):124104. PubMed ID: 17902890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Universal scaling of potential energy functions describing intermolecular interactions. I. Foundations and scalable forms of new generalized Mie, Lennard-Jones, Morse, and Buckingham exponential-6 potentials.
    Xantheas SS; Werhahn JC
    J Chem Phys; 2014 Aug; 141(6):064117. PubMed ID: 25134561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration.
    Ashbaugh HS; Liu L; Surampudi LN
    J Chem Phys; 2011 Aug; 135(5):054510. PubMed ID: 21823715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.