These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 22168734)
1. Pullout performance of self-tapping medical screws. Wu Z; Nassar SA; Yang X J Biomech Eng; 2011 Nov; 133(11):111002. PubMed ID: 22168734 [TBL] [Abstract][Full Text] [Related]
2. The influence of the insertion technique on the pullout force of pedicle screws: an experimental study. Chatzistergos PE; Sapkas G; Kourkoulis SK Spine (Phila Pa 1976); 2010 Apr; 35(9):E332-7. PubMed ID: 20150834 [TBL] [Abstract][Full Text] [Related]
3. A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes. Pfeiffer FM; Abernathie DL; Smith DE Spine (Phila Pa 1976); 2006 Nov; 31(23):E867-70. PubMed ID: 17077722 [TBL] [Abstract][Full Text] [Related]
4. The effect of pilot hole size on the insertion torque and pullout strength of self-tapping cortical bone screws in osteoporotic bone. Battula S; Schoenfeld AJ; Sahai V; Vrabec GA; Tank J; Njus GO J Trauma; 2008 Apr; 64(4):990-5. PubMed ID: 18404066 [TBL] [Abstract][Full Text] [Related]
5. Pullout strength and load to failure properties of self-tapping cortical screws in synthetic and cadaveric environments representative of healthy and osteoporotic bone. Schoenfeld AJ; Battula S; Sahai V; Vrabec GA; Corman S; Burton L; Njus GO J Trauma; 2008 May; 64(5):1302-7. PubMed ID: 18469654 [TBL] [Abstract][Full Text] [Related]
6. Effect of pilot hole diameter and tapping on insertion torque and axial pullout strength of 4.0-mm cancellous bone screws. Kunkel KA; Suber JT; Gerard PD; Kowaleski MP Am J Vet Res; 2011 Dec; 72(12):1660-5. PubMed ID: 22126695 [TBL] [Abstract][Full Text] [Related]
7. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses. Chao CK; Hsu CC; Wang JL; Lin J J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719 [TBL] [Abstract][Full Text] [Related]
8. Reduction of pullout strength caused by reinsertion of 3.5-mm cortical screws. Matityahu A; Hurschler C; Badenhop M; Stukenborg-Colsman C; Waizy H; Wentz B; Marmor M; Krettek C J Orthop Trauma; 2013 Mar; 27(3):170-6. PubMed ID: 22534691 [TBL] [Abstract][Full Text] [Related]
9. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. Hsu CC; Chao CK; Wang JL; Hou SM; Tsai YT; Lin J J Orthop Res; 2005 Jul; 23(4):788-94. PubMed ID: 16022991 [TBL] [Abstract][Full Text] [Related]
10. Pullout strength variance among self-tapping screws inserted to different depths. Schoenfeld A; Vrabec G; Battula S; Salvator A; Njus G Am J Orthop (Belle Mead NJ); 2008 Sep; 37(9):466-9. PubMed ID: 18982183 [TBL] [Abstract][Full Text] [Related]
11. Screw orientation and plate type (variable- vs. fixed-angle) effect strength of fixation for in vitro biomechanical testing of the Synthes CSLP. Dipaola CP; Jacobson JA; Awad H; Conrad BP; Rechtine GR Spine J; 2008; 8(5):717-22. PubMed ID: 17983846 [TBL] [Abstract][Full Text] [Related]
12. Screw design alters the effects of stress relaxation on pullout. Inceoğlu S; Kilinçer C; McLain RF Biomed Mater Eng; 2008; 18(2):53-60. PubMed ID: 18408256 [TBL] [Abstract][Full Text] [Related]
13. Mechanical tests and finite element models for bone holding power of tibial locking screws. Hou SM; Hsu CC; Wang JL; Chao CK; Lin J Clin Biomech (Bristol); 2004 Aug; 19(7):738-45. PubMed ID: 15288461 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation of bone screw induced pretension: the cases of under-tapping and conical profile. Chatzistergos PE; Magnissalis EA; Kourkoulis SK Med Eng Phys; 2014 Mar; 36(3):378-86. PubMed ID: 24388102 [TBL] [Abstract][Full Text] [Related]
15. Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses. Chao CK; Hsu CC; Wang JL; Lin J Clin Biomech (Bristol); 2007 Jan; 22(1):59-66. PubMed ID: 16959388 [TBL] [Abstract][Full Text] [Related]
16. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
17. The effect of screw pullout rate on screw purchase in synthetic cancellous bone. Zdero R; Schemitsch EH J Biomech Eng; 2009 Feb; 131(2):024501. PubMed ID: 19102576 [TBL] [Abstract][Full Text] [Related]
18. Investigation of fixation screw pull-out strength on human spine. Zhang QH; Tan SH; Chou SM J Biomech; 2004 Apr; 37(4):479-85. PubMed ID: 14996559 [TBL] [Abstract][Full Text] [Related]
19. A comparison of screw insertion torque and pullout strength. Ricci WM; Tornetta P; Petteys T; Gerlach D; Cartner J; Walker Z; Russell TA J Orthop Trauma; 2010 Jun; 24(6):374-8. PubMed ID: 20502221 [TBL] [Abstract][Full Text] [Related]
20. Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping. Chen LH; Tai CL; Lai PL; Lee DM; Tsai TT; Fu TS; Niu CC; Chen WJ Clin Biomech (Bristol); 2009 Oct; 24(8):613-8. PubMed ID: 19481845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]