These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22168737)

  • 1. Geometric hysteresis of alveolated ductal architecture.
    Kojic M; Butler JP; Vlastelica I; Stojanovic B; Rankovic V; Tsuda A
    J Biomech Eng; 2011 Nov; 133(11):111005. PubMed ID: 22168737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of alveolated duct structure on aerosol kinetics. I. Diffusional deposition in the absence of gravity.
    Tsuda A; Butler JP; Fredberg JJ
    J Appl Physiol (1985); 1994 Jun; 76(6):2497-509. PubMed ID: 7928876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus.
    Tsuda A; Henry FS; Butler JP
    J Appl Physiol (1985); 1995 Sep; 79(3):1055-63. PubMed ID: 8567502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree.
    Sznitman J; Heimsch T; Wildhaber JH; Tsuda A; Rösgen T
    J Biomech Eng; 2009 Mar; 131(3):031010. PubMed ID: 19154069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acinar flow irreversibility caused by perturbations in reversible alveolar wall motion.
    Tsuda A; Otani Y; Butler JP
    J Appl Physiol (1985); 1999 Mar; 86(3):977-84. PubMed ID: 10066713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional convective alveolar flow induced by rhythmic breathing motion of the pulmonary acinus.
    Sznitman J; Heimsch F; Heimsch T; Rusch D; Rösgen T
    J Biomech Eng; 2007 Oct; 129(5):658-65. PubMed ID: 17887891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Airflow and Particle Deposition in a Human Acinar Region.
    Kolanjiyil AV; Kleinstreuer C
    Comput Math Methods Med; 2019; 2019():5952941. PubMed ID: 30755779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of geometry on airflow in the acinar region of the human lung.
    Kumar H; Tawhai MH; Hoffman EA; Lin CL
    J Biomech; 2009 Aug; 42(11):1635-42. PubMed ID: 19482288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of alveolar topology on acinar flows and convective mixing.
    Hofemeier P; Sznitman J
    J Biomech Eng; 2014 Jun; 136(6):061007. PubMed ID: 24686842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airflow analysis in the alveolar region using the lattice-Boltzmann method.
    Li Z; Kleinstreuer C
    Med Biol Eng Comput; 2011 Apr; 49(4):441-51. PubMed ID: 21308417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic behavior of a lung alveolar duct model.
    Denny E; Schroter RC
    J Biomech Eng; 2000 Apr; 122(2):143-51. PubMed ID: 10834154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of tissue elastic properties and surfactant on alveolar stability.
    Andreassen S; Steimle KL; Mogensen ML; Bernardino de la Serna J; Rees S; Karbing DS
    J Appl Physiol (1985); 2010 Nov; 109(5):1369-77. PubMed ID: 20724566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic alveolar mechanics as studied by videomicroscopy.
    Daly BD; Parks GE; Edmonds CH; Hibbs CW; Norman JC
    Respir Physiol; 1975 Jul; 24(2):217-32. PubMed ID: 1101330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerosol transport and deposition in the rhythmically expanding pulmonary acinus.
    Tsuda A; Henry FS; Otani Y; Haber S; Butler JP
    J Aerosol Med; 1996; 9(3):389-408. PubMed ID: 10163663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial transport along the human acinar tree.
    Henry FS; Tsuda A
    J Biomech Eng; 2010 Oct; 132(10):101001. PubMed ID: 20887011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model of lung parenchyma.
    Karakaplan AD; Bieniek MP; Skalak R
    J Biomech Eng; 1980 May; 102(2):124-36. PubMed ID: 6893348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for mechanical structure of the alveolar duct.
    Wilson TA; Bachofen H
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Apr; 52(4):1064-70. PubMed ID: 7085408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface tension effects on flow dynamics and alveolar mechanics in the acinar region of human lung.
    Francis I; Saha SC
    Heliyon; 2022 Oct; 8(10):e11026. PubMed ID: 36281407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric hysteresis in pulmonary surface-to-volume ratio during tidal breathing.
    Miki H; Butler JP; Rogers RA; Lehr JL
    J Appl Physiol (1985); 1993 Oct; 75(4):1630-6. PubMed ID: 8282613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of alveolated duct structure on aerosol kinetics. II. Gravitational sedimentation and inertial impaction.
    Tsuda A; Butler JP; Fredberg JJ
    J Appl Physiol (1985); 1994 Jun; 76(6):2510-6. PubMed ID: 7928877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.