These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22168744)

  • 21. A comparison of passive flexion-extension to normal gait in the ovine stifle joint.
    Darcy SP; Rosvold JM; Beveridge JE; Corr DT; Brown JJ; Sutherland CA; Marchuk LL; Frank CB; Shrive NG
    J Biomech; 2008; 41(4):854-60. PubMed ID: 18093599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-step registration of in vivo stereophotogrammetry with both in vitro 6-DOFs electrogoniometry and CT medical imaging.
    Sholukha V; Leardini A; Salvia P; Rooze M; Van Sint Jan S
    J Biomech; 2006; 39(11):2087-95. PubMed ID: 16085076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.
    Donati M; Camomilla V; Vannozzi G; Cappozzo A
    J Biomech; 2008 Jul; 41(10):2219-26. PubMed ID: 18550066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion estimation using point cluster method and Kalman filter.
    Senesh M; Wolf A
    J Biomech Eng; 2009 May; 131(5):051008. PubMed ID: 19388778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements.
    Sheets AL; Corazza S; Andriacchi TP
    J Biomech Eng; 2010 Jan; 132(1):011004. PubMed ID: 20524742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating joint kinematics from skin motion observation: modelling and validation.
    Wolf A; Senesh M
    Comput Methods Biomech Biomed Engin; 2011 Nov; 14(11):939-46. PubMed ID: 21607885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.
    Xu H; Merryweather A; Bloswick D; Mao Q; Wang T
    Biomed Mater Eng; 2015; 26 Suppl 1():S685-91. PubMed ID: 26406064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A three-dimensional MRI analysis of knee kinematics.
    Patel VV; Hall K; Ries M; Lotz J; Ozhinsky E; Lindsey C; Lu Y; Majumdar S
    J Orthop Res; 2004 Mar; 22(2):283-92. PubMed ID: 15013086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can the reliability of three-dimensional running kinematics be improved using functional joint methodology?
    Pohl MB; Lloyd C; Ferber R
    Gait Posture; 2010 Oct; 32(4):559-63. PubMed ID: 20732816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new model to predict in vivo human knee kinematics under physiological-like muscle activation.
    Heller MO; König C; Graichen H; Hinterwimmer S; Ehrig RM; Duda GN; Taylor WR
    J Biomech; 2007; 40 Suppl 1():S45-53. PubMed ID: 17445821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames.
    Schache AG; Baker R; Vaughan CL
    J Biomech; 2007; 40(1):9-19. PubMed ID: 16442547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent.
    Tsai TY; Lu TW; Kuo MY; Lin CC
    J Biomech; 2011 Apr; 44(6):1182-8. PubMed ID: 21296352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
    Borbély BJ; Szolgay P
    Biomed Eng Online; 2017 Jan; 16(1):21. PubMed ID: 28095857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishment of a knee-joint coordinate system from helical axes analysis--a kinematic approach without anatomical referencing.
    Mannel H; Marin F; Claes L; Dürselen L
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1341-7. PubMed ID: 15311818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction of skeletal movement using skin markers: comparative assessment of bone pose estimators.
    Cereatti A; Della Croce U; Cappozzo A
    J Neuroeng Rehabil; 2006 Mar; 3():7. PubMed ID: 16556302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes.
    Dejnabadi H; Jolles BM; Aminian K
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1478-84. PubMed ID: 16119244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait analysis system for assessment of dynamic loading axis of the knee.
    Kawakami H; Sugano N; Yonenobu K; Yoshikawa H; Ochi T; Hattori A; Suzuki N
    Gait Posture; 2005 Jan; 21(1):125-30. PubMed ID: 15536041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.