These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22168757)

  • 1. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.
    Lee JA; Shin MK; Kim SH; Kim SJ; Spinks GM; Wallace GG; Ovalle-Robles R; Lima MD; Kozlov ME; Baughman RH
    ACS Nano; 2012 Jan; 6(1):327-34. PubMed ID: 22168757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-based all-solid-state flexible supercapacitors for self-powered systems.
    Xiao X; Li T; Yang P; Gao Y; Jin H; Ni W; Zhan W; Zhang X; Cao Y; Zhong J; Gong L; Yen WC; Mai W; Chen J; Huo K; Chueh YL; Wang ZL; Zhou J
    ACS Nano; 2012 Oct; 6(10):9200-6. PubMed ID: 22978389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices.
    Lee JA; Shin MK; Kim SH; Cho HU; Spinks GM; Wallace GG; Lima MD; Lepró X; Kozlov ME; Baughman RH; Kim SJ
    Nat Commun; 2013; 4():1970. PubMed ID: 23733169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.
    Yuan L; Lu XH; Xiao X; Zhai T; Dai J; Zhang F; Hu B; Wang X; Gong L; Chen J; Hu C; Tong Y; Zhou J; Wang ZL
    ACS Nano; 2012 Jan; 6(1):656-61. PubMed ID: 22182051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes.
    Cheng Y; Zhang H; Lu S; Varanasi CV; Liu J
    Nanoscale; 2013 Feb; 5(3):1067-73. PubMed ID: 23254316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors.
    Aravindan V; Chuiling W; Reddy MV; Rao GV; Chowdari BV; Madhavi S
    Phys Chem Chem Phys; 2012 Apr; 14(16):5808-14. PubMed ID: 22434062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.
    Zhao X; Sánchez BM; Dobson PJ; Grant PS
    Nanoscale; 2011 Mar; 3(3):839-55. PubMed ID: 21253650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance.
    Zhang G; Yu L; Hoster HE; Lou XW
    Nanoscale; 2013 Feb; 5(3):877-81. PubMed ID: 23238333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors.
    Xie K; Li J; Lai Y; Zhang Z; Liu Y; Zhang G; Huang H
    Nanoscale; 2011 May; 3(5):2202-7. PubMed ID: 21455534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes.
    Zhang X; Shi W; Zhu J; Kharistal DJ; Zhao W; Lalia BS; Hng HH; Yan Q
    ACS Nano; 2011 Mar; 5(3):2013-9. PubMed ID: 21332174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dioxythiophene-based polymer electrodes for supercapacitor modules.
    Liu DY; Reynolds JR
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3586-93. PubMed ID: 21090685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells.
    Zhang S; Ji C; Bian Z; Yu P; Zhang L; Liu D; Shi E; Shang Y; Peng H; Cheng Q; Wang D; Huang C; Cao A
    ACS Nano; 2012 Aug; 6(8):7191-8. PubMed ID: 22861684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.
    Kim YJ; Yang CM; Park KC; Kaneko K; Kim YA; Noguchi M; Fujino T; Oyama S; Endo M
    ChemSusChem; 2012 Mar; 5(3):535-41. PubMed ID: 22378623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.
    Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C
    ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of hybrid conducting polymer-carbon nanotube yarn.
    Foroughi J; Spinks GM; Ghorbani SR; Kozlov ME; Safaei F; Peleckis G; Wallace GG; Baughman RH
    Nanoscale; 2012 Feb; 4(3):940-5. PubMed ID: 22173836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors.
    Chen LF; Zhang XD; Liang HW; Kong M; Guan QF; Chen P; Wu ZY; Yu SH
    ACS Nano; 2012 Aug; 6(8):7092-102. PubMed ID: 22769051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.