BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22169101)

  • 1. Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration.
    Charbel Issa P; Singh MS; Lipinski DM; Chong NV; Delori FC; Barnard AR; MacLaren RE
    Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):1066-75. PubMed ID: 22169101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundus autofluorescence and photoreceptor cell rosettes in mouse models.
    Flynn E; Ueda K; Auran E; Sullivan JM; Sparrow JR
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(9):5643-52. PubMed ID: 25015357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipofuscin- and melanin-related fundus autofluorescence in patients with ABCA4-associated retinal dystrophies.
    Kellner S; Kellner U; Weber BH; Fiebig B; Weinitz S; Ruether K
    Am J Ophthalmol; 2009 May; 147(5):895-902, 902.e1. PubMed ID: 19243736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence lifetime imaging of the ocular fundus in mice.
    Dysli C; Dysli M; Enzmann V; Wolf S; Zinkernagel MS
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(11):7206-15. PubMed ID: 25249601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative fundus autofluorescence in mice: correlation with HPLC quantitation of RPE lipofuscin and measurement of retina outer nuclear layer thickness.
    Sparrow JR; Blonska A; Flynn E; Duncker T; Greenberg JP; Secondi R; Ueda K; Delori FC
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):2812-20. PubMed ID: 23548623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age, lipofuscin and melanin oxidation affect fundus near-infrared autofluorescence.
    Taubitz T; Fang Y; Biesemeier A; Julien-Schraermeyer S; Schraermeyer U
    EBioMedicine; 2019 Oct; 48():592-604. PubMed ID: 31648994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral domain optical coherence tomography in mouse models of retinal degeneration.
    Huber G; Beck SC; Grimm C; Sahaboglu-Tekgoz A; Paquet-Durand F; Wenzel A; Humphries P; Redmond TM; Seeliger MW; Fischer MD
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5888-95. PubMed ID: 19661229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal Fundus Imaging of Sodium Iodate-Treated Mice Informs RPE Susceptibility and Origins of Increased Fundus Autofluorescence.
    Zhao J; Kim HJ; Sparrow JR
    Invest Ophthalmol Vis Sci; 2017 Apr; 58(4):2152-2159. PubMed ID: 28395299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice.
    Xu H; Chen M; Manivannan A; Lois N; Forrester JV
    Aging Cell; 2008 Jan; 7(1):58-68. PubMed ID: 17988243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable phenotypic expressivity in inbred retinal degeneration mouse lines: A comparative study of C3H/HeOu and FVB/N rd1 mice.
    van Wyk M; Schneider S; Kleinlogel S
    Mol Vis; 2015; 21():811-27. PubMed ID: 26283863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin.
    Keilhauer CN; Delori FC
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3556-64. PubMed ID: 16877429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of digital scanning laser ophthalmoscopy fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration.
    Schmitz-Valckenberg S; Jorzik J; Unnebrink K; Holz FG;
    Graefes Arch Clin Exp Ophthalmol; 2002 Feb; 240(2):73-8. PubMed ID: 11933894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundus autofluorescence imaging of retinal dystrophies.
    Boon CJ; Jeroen Klevering B; Keunen JE; Hoyng CB; Theelen T
    Vision Res; 2008 Nov; 48(26):2569-77. PubMed ID: 18289629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundus autofluorescence and progression of age-related macular degeneration.
    Schmitz-Valckenberg S; Fleckenstein M; Scholl HP; Holz FG
    Surv Ophthalmol; 2009; 54(1):96-117. PubMed ID: 19171212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal fundus and retinal studies with SD-OCT: a comparison of five mouse inbred strains.
    Puk O; de Angelis MH; Graw J
    Mamm Genome; 2013 Jun; 24(5-6):198-205. PubMed ID: 23681115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundus autofluorescence imaging using red excitation light.
    Birtel J; Bauer T; Pauleikhoff L; Rüber T; Gliem M; Charbel Issa P
    Sci Rep; 2023 Jun; 13(1):9916. PubMed ID: 37336979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes.
    Hawes NL; Smith RS; Chang B; Davisson M; Heckenlively JR; John SW
    Mol Vis; 1999 Sep; 5():22. PubMed ID: 10493779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope.
    Delori F; Greenberg JP; Woods RL; Fischer J; Duncker T; Sparrow J; Smith RT
    Invest Ophthalmol Vis Sci; 2011 Dec; 52(13):9379-90. PubMed ID: 22016060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Fundus Autofluorescence in ABCA4-Related Retinopathy -Functional Relevance and Genotype-Phenotype Correlation.
    Müller PL; Gliem M; McGuinnes M; Birtel J; Holz FG; Charbel Issa P
    Am J Ophthalmol; 2021 Feb; 222():340-350. PubMed ID: 32891696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal scanning laser ophthalmoscopy versus modified conventional fundus camera for fundus autofluorescence.
    Calvo-Maroto AM; Esteve-Taboada JJ; Domínguez-Vicent A; Pérez-Cambrodí RJ; Cerviño A
    Expert Rev Med Devices; 2016 Oct; 13(10):965-978. PubMed ID: 27634136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.