These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 22169533)

  • 1. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing.
    Tanaka S; Nakato R; Katou Y; Shirahige K; Araki H
    Curr Biol; 2011 Dec; 21(24):2055-63. PubMed ID: 22169533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae.
    Kamimura Y; Tak YS; Sugino A; Araki H
    EMBO J; 2001 Apr; 20(8):2097-107. PubMed ID: 11296242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpSld3 is required for loading and maintenance of SpCdc45 on chromatin in DNA replication in fission yeast.
    Nakajima R; Masukata H
    Mol Biol Cell; 2002 May; 13(5):1462-72. PubMed ID: 12006645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins.
    Yabuuchi H; Yamada Y; Uchida T; Sunathvanichkul T; Nakagawa T; Masukata H
    EMBO J; 2006 Oct; 25(19):4663-74. PubMed ID: 16990792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast.
    Takayama Y; Kamimura Y; Okawa M; Muramatsu S; Sugino A; Araki H
    Genes Dev; 2003 May; 17(9):1153-65. PubMed ID: 12730134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Damage-induced phosphorylation of Sld3 is important to block late origin firing.
    Lopez-Mosqueda J; Maas NL; Jonsson ZO; Defazio-Eli LG; Wohlschlegel J; Toczyski DP
    Nature; 2010 Sep; 467(7314):479-83. PubMed ID: 20865002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of manipulating levels of replication initiation factors on origin firing efficiency in yeast.
    Lynch KL; Alvino GM; Kwan EX; Brewer BJ; Raghuraman MK
    PLoS Genet; 2019 Oct; 15(10):e1008430. PubMed ID: 31584938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase.
    Bruck I; Kaplan DL
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11223-8. PubMed ID: 26305950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast.
    Tanaka T; Umemori T; Endo S; Muramatsu S; Kanemaki M; Kamimura Y; Obuse C; Araki H
    EMBO J; 2011 May; 30(10):2019-30. PubMed ID: 21487389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation.
    Zegerman P; Diffley JF
    Nature; 2010 Sep; 467(7314):474-8. PubMed ID: 20835227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation.
    Deegan TD; Yeeles JT; Diffley JF
    EMBO J; 2016 May; 35(9):961-73. PubMed ID: 26912723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression.
    Sheu YJ; Kinney JB; Stillman B
    Genome Res; 2016 Mar; 26(3):315-30. PubMed ID: 26733669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases.
    Tanaka T; Nasmyth K
    EMBO J; 1998 Sep; 17(17):5182-91. PubMed ID: 9724654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast.
    Tanaka S; Umemori T; Hirai K; Muramatsu S; Kamimura Y; Araki H
    Nature; 2007 Jan; 445(7125):328-32. PubMed ID: 17167415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helicase activation and establishment of replication forks at chromosomal origins of replication.
    Tanaka S; Araki H
    Cold Spring Harb Perspect Biol; 2013 Dec; 5(12):a010371. PubMed ID: 23881938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast.
    Mantiero D; Mackenzie A; Donaldson A; Zegerman P
    EMBO J; 2011 Nov; 30(23):4805-14. PubMed ID: 22081107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Firing of Replication Origins Frees Dbf4-Cdc7 to Target Eco1 for Destruction.
    Seoane AI; Morgan DO
    Curr Biol; 2017 Sep; 27(18):2849-2855.e2. PubMed ID: 28918948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases.
    Heller RC; Kang S; Lam WM; Chen S; Chan CS; Bell SP
    Cell; 2011 Jul; 146(1):80-91. PubMed ID: 21729781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae.
    Hoang ML; Leon RP; Pessoa-Brandao L; Hunt S; Raghuraman MK; Fangman WL; Brewer BJ; Sclafani RA
    Mol Cell Biol; 2007 Nov; 27(21):7594-602. PubMed ID: 17724082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of replication factor Sld3 and histone acetyl transferase Esa1 alleviates gene silencing and promotes the activation of late and dormant replication origins.
    Tanaka S
    Genetics; 2021 Mar; 217(1):1-11. PubMed ID: 33683348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.