These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22169816)

  • 41. Two-color two-photon 4Pi fluorescence microscopy.
    Chen J; Midorikawa K
    Opt Lett; 2004 Jun; 29(12):1354-6. PubMed ID: 15233433
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy.
    Oh JT; Li ML; Zhang HF; Maslov K; Stoica G; Wang LV
    J Biomed Opt; 2006; 11(3):34032. PubMed ID: 16822081
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional differential interference contrast microscopy using synthetic aperture imaging.
    Kim M; Choi Y; Fang-Yen C; Sung Y; Kim K; Dasari RR; Feld MS; Choi W
    J Biomed Opt; 2012 Feb; 17(2):026003. PubMed ID: 22463035
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Real-time visual sensing system achieving high-speed 3D particle tracking with nanometer resolution.
    Cheng P; Jhiang SM; Menq CH
    Appl Opt; 2013 Nov; 52(31):7530-9. PubMed ID: 24216655
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning.
    Cheng LC; Chang CY; Lin CY; Cho KC; Yen WC; Chang NS; Xu C; Dong CY; Chen SJ
    Opt Express; 2012 Apr; 20(8):8939-48. PubMed ID: 22513605
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system.
    Pavani SR; DeLuca JG; Piestun R
    Opt Express; 2009 Oct; 17(22):19644-55. PubMed ID: 19997184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanoscale contact line visualization based on Total Internal Reflection Fluorescence Microscopy.
    Franken MJ; Poelma C; Westerweel J
    Opt Express; 2013 Nov; 21(22):26093-102. PubMed ID: 24216833
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures.
    Li X; Lam WJ; Cao Z; Hao Y; Sun Q; He S; Mak HY; Qu JY
    J Biomed Opt; 2015 Nov; 20(11):110501. PubMed ID: 26580697
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temporally and spectrally resolved sampling imaging with a specially designed streak camera.
    Qu J; Liu L; Chen D; Lin Z; Xu G; Guo B; Niu H
    Opt Lett; 2006 Feb; 31(3):368-70. PubMed ID: 16480211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited].
    Edwards C; Zhou R; Hwang SW; McKeown SJ; Wang K; Bhaduri B; Ganti R; Yunker PJ; Yodh AG; Rogers JA; Goddard LL; Popescu G
    Appl Opt; 2014 Sep; 53(27):G33-43. PubMed ID: 25322136
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Note: A three-dimensional calibration device for the confocal microscope.
    Jensen KE; Weitz DA; Spaepen F
    Rev Sci Instrum; 2013 Jan; 84(1):016108. PubMed ID: 23387714
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochip reader with dynamic holographic excitation and hyperspectral fluorescence detection.
    Glasenapp C; Mönch W; Krause H; Zappe H
    J Biomed Opt; 2007; 12(1):014038. PubMed ID: 17343513
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pump-probe optical microscopy for imaging nonfluorescent chromophores.
    Wei L; Min W
    Anal Bioanal Chem; 2012 Jun; 403(8):2197-202. PubMed ID: 22411535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single-molecule monitoring in living cells by use of fluorescence microscopy.
    Luo W; He K; Xia T; Fang X
    Anal Bioanal Chem; 2013 Jan; 405(1):43-9. PubMed ID: 23001303
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology.
    Gullapalli RR; Tabouillot T; Mathura R; Dangaria JH; Butler PJ
    J Biomed Opt; 2007; 12(1):014012. PubMed ID: 17343487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of real-time confocal microscopy for observation of living cells in tissue specimens.
    Satoh Y; Nishimura T; Kimura K; Mori S; Saino T
    Hum Cell; 1998 Dec; 11(4):191-8. PubMed ID: 10363156
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design.
    Li C; Mitchell GS; Dutta J; Ahn S; Leahy RM; Cherry SR
    Opt Express; 2009 Apr; 17(9):7571-85. PubMed ID: 19399136
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An approach for characterizing and comparing hyperspectral microscopy systems.
    Annamdevula NS; Sweat B; Favreau P; Lindsey AS; Alvarez DF; Rich TC; Leavesley SJ
    Sensors (Basel); 2013 Jul; 13(7):9267-93. PubMed ID: 23877125
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three dimensional live cell lithography.
    Linnenberger A; Bodine MI; Fiedler C; Roberts JJ; Skaalure SC; Quinn JP; Bryant SJ; Cole M; McLeod RR
    Opt Express; 2013 Apr; 21(8):10269-77. PubMed ID: 23609736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential interference contrast imaging on a real time confocal scanning optical microscope.
    Corle TR; Kino GS
    Appl Opt; 1990 Sep; 29(26):3769-74. PubMed ID: 20567482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.