BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22170046)

  • 1. Glycosylation of skeletal calsequestrin: implications for its function.
    Sanchez EJ; Lewis KM; Munske GR; Nissen MS; Kang C
    J Biol Chem; 2012 Jan; 287(5):3042-50. PubMed ID: 22170046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications.
    Marabelli C; Santiago DJ; Priori SG
    Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calsequestrin, a key protein in striated muscle health and disease.
    Rossi D; Gamberucci A; Pierantozzi E; Amato C; Migliore L; Sorrentino V
    J Muscle Res Cell Motil; 2021 Jun; 42(2):267-279. PubMed ID: 32488451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of human calsequestrin: implications for calcium regulation.
    Sanchez EJ; Munske GR; Criswell A; Milting H; Dunker AK; Kang C
    Mol Cell Biochem; 2011 Jul; 353(1-2):195-204. PubMed ID: 21416293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel details of calsequestrin gel conformation in situ.
    Perni S; Close M; Franzini-Armstrong C
    J Biol Chem; 2013 Oct; 288(43):31358-62. PubMed ID: 24025332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calsequestrin: a well-known but curious protein in skeletal muscle.
    Woo JS; Jeong SY; Park JH; Choi JH; Lee EH
    Exp Mol Med; 2020 Dec; 52(12):1908-1925. PubMed ID: 33288873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants.
    Bal NC; Jena N; Sopariwala D; Balaraju T; Shaikh S; Bal C; Sharon A; Gyorke S; Periasamy M
    Biochem J; 2011 Apr; 435(2):391-9. PubMed ID: 21265816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia.
    Titus EW; Deiter FH; Shi C; Wojciak J; Scheinman M; Jura N; Deo RC
    Nat Struct Mol Biol; 2020 Dec; 27(12):1142-1151. PubMed ID: 33046906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human CASQ2 mutation K206N is associated with hyperglycosylation and altered cellular calcium handling.
    Kirchhefer U; Wehrmeister D; Postma AV; Pohlentz G; Mormann M; Kucerova D; Müller FU; Schmitz W; Schulze-Bahr E; Wilde AA; Neumann J
    J Mol Cell Cardiol; 2010 Jul; 49(1):95-105. PubMed ID: 20302875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calsequestrin 2 (CASQ2) mutations increase expression of calreticulin and ryanodine receptors, causing catecholaminergic polymorphic ventricular tachycardia.
    Song L; Alcalai R; Arad M; Wolf CM; Toka O; Conner DA; Berul CI; Eldar M; Seidman CE; Seidman JG
    J Clin Invest; 2007 Jul; 117(7):1814-23. PubMed ID: 17607358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential adverse interaction of human cardiac calsequestrin.
    Kang C; Nissen MS; Sanchez EJ; Lam KS; Milting H
    Eur J Pharmacol; 2010 Nov; 646(1-3):12-21. PubMed ID: 20713040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catecholaminergic polymorphic ventricular tachycardia-related mutations R33Q and L167H alter calcium sensitivity of human cardiac calsequestrin.
    Valle G; Galla D; Nori A; Priori SG; Gyorke S; de Filippis V; Volpe P
    Biochem J; 2008 Jul; 413(2):291-303. PubMed ID: 18399795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-capacity Ca2+ binding of human skeletal calsequestrin.
    Sanchez EJ; Lewis KM; Danna BR; Kang C
    J Biol Chem; 2012 Mar; 287(14):11592-601. PubMed ID: 22337878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential role of cardiac calsequestrin in the lethal arrhythmic effects of cocaine.
    Sanchez EJ; Hayes RP; Barr JT; Lewis KM; Webb BN; Subramanian AK; Nissen MS; Jones JP; Shelden EA; Sorg BA; Fill M; Schenk JO; Kang C
    Drug Alcohol Depend; 2013 Dec; 133(2):344-51. PubMed ID: 23876860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Post-Translational Modifications to Calsequestrins of Cardiac and Skeletal Muscle.
    Lewis KM; Munske GR; Byrd SS; Kang J; Cho HJ; Ríos E; Kang C
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27649144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of calsequestrin in atrial and ventricular muscle of thermally acclimated rainbow trout.
    Korajoki H; Vornanen M
    J Exp Biol; 2009 Nov; 212(Pt 21):3403-14. PubMed ID: 19837881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing skeletal and cardiac calsequestrin structures and their calcium binding: a proposed mechanism for coupled calcium binding and protein polymerization.
    Park H; Park IY; Kim E; Youn B; Fields K; Dunker AK; Kang C
    J Biol Chem; 2004 Apr; 279(17):18026-33. PubMed ID: 14871888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calsequestrin. Structure, function, and evolution.
    Wang Q; Michalak M
    Cell Calcium; 2020 Sep; 90():102242. PubMed ID: 32574906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of pharmaceutical drug binding into calsequestrin.
    Subra AK; Nissen MS; Lewis KM; Muralidharan AK; Sanchez EJ; Milting H; Kang CH
    Int J Mol Sci; 2012 Nov; 13(11):14326-43. PubMed ID: 23203067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle.
    Sztretye M; Yi J; Figueroa L; Zhou J; Royer L; Allen P; Brum G; Ríos E
    J Gen Physiol; 2011 Aug; 138(2):231-47. PubMed ID: 21788611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.