BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 22170056)

  • 1. Cell-cell membrane fusion induced by p15 fusion-associated small transmembrane (FAST) protein requires a novel fusion peptide motif containing a myristoylated polyproline type II helix.
    Top D; Read JA; Dawe SJ; Syvitski RT; Duncan R
    J Biol Chem; 2012 Jan; 287(5):3403-14. PubMed ID: 22170056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myristoylation, a protruding loop, and structural plasticity are essential features of a nonenveloped virus fusion peptide motif.
    Corcoran JA; Syvitski R; Top D; Epand RM; Epand RF; Jakeman D; Duncan R
    J Biol Chem; 2004 Dec; 279(49):51386-94. PubMed ID: 15448165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual topological arrangement of structural motifs in the baboon reovirus fusion-associated small transmembrane protein.
    Dawe S; Corcoran JA; Clancy EK; Salsman J; Duncan R
    J Virol; 2005 May; 79(10):6216-26. PubMed ID: 15858006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix-destabilizing, beta-branched, and polar residues in the baboon reovirus p15 transmembrane domain influence the modularity of FAST proteins.
    Clancy EK; Duncan R
    J Virol; 2011 May; 85(10):4707-19. PubMed ID: 21367887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor.
    Read J; Clancy EK; Sarker M; de Antueno R; Langelaan DN; Parmar HB; Shin K; Rainey JK; Duncan R
    PLoS Pathog; 2015 Jun; 11(6):e1004962. PubMed ID: 26061049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein.
    Shmulevitz M; Epand RF; Epand RM; Duncan R
    J Virol; 2004 Mar; 78(6):2808-18. PubMed ID: 14990700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The p10 FAST protein fusion peptide functions as a cystine noose to induce cholesterol-dependent liposome fusion without liposome tubulation.
    Key T; Sarker M; de Antueno R; Rainey JK; Duncan R
    Biochim Biophys Acta; 2015 Feb; 1848(2):408-16. PubMed ID: 25450808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compact, multifunctional fusion module directs cholesterol-dependent homomultimerization and syncytiogenic efficiency of reovirus p10 FAST proteins.
    Key T; Duncan R
    PLoS Pathog; 2014 Mar; 10(3):e1004023. PubMed ID: 24651689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The S4 genome segment of baboon reovirus is bicistronic and encodes a novel fusion-associated small transmembrane protein.
    Dawe S; Duncan R
    J Virol; 2002 Mar; 76(5):2131-40. PubMed ID: 11836390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Features of a spatially constrained cystine loop in the p10 FAST protein ectodomain define a new class of viral fusion peptides.
    Barry C; Key T; Haddad R; Duncan R
    J Biol Chem; 2010 May; 285(22):16424-33. PubMed ID: 20363742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atypical fusion peptide of Nelson Bay virus fusion-associated small transmembrane protein.
    Cheng LT; Plemper RK; Compans RW
    J Virol; 2005 Feb; 79(3):1853-60. PubMed ID: 15650209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An antibody directed against the fusion peptide of Junin virus envelope glycoprotein GPC inhibits pH-induced membrane fusion.
    York J; Berry JD; Ströher U; Li Q; Feldmann H; Lu M; Trahey M; Nunberg JH
    J Virol; 2010 Jun; 84(12):6119-29. PubMed ID: 20392854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fusogenic Reoviruses and Their Fusion-Associated Small Transmembrane (FAST) Proteins.
    Duncan R
    Annu Rev Virol; 2019 Sep; 6(1):341-363. PubMed ID: 31283438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan-dependent membrane interaction and heteromerization with the internal fusion peptide by the membrane proximal external region of SARS-CoV spike protein.
    Liao Y; Zhang SM; Neo TL; Tam JP
    Biochemistry; 2015 Mar; 54(9):1819-30. PubMed ID: 25668103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.
    Yao H; Lee M; Liao SY; Hong M
    Biochemistry; 2016 Dec; 55(49):6787-6800. PubMed ID: 27766858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the transmembrane domain in paramyxovirus F protein-mediated membrane fusion.
    Bissonnette ML; Donald JE; DeGrado WF; Jardetzky TS; Lamb RA
    J Mol Biol; 2009 Feb; 386(1):14-36. PubMed ID: 19121325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of polyproline II regions derived from the proline-rich nuclear receptor coactivators PNRC and PNRC2: new insights for ERα coactivator interactions.
    Byrne C; Miclet E; Broutin I; Gallo D; Pelekanou V; Kampa M; Castanas E; Leclercq G; Jacquot Y
    Chirality; 2013 Oct; 25(10):628-42. PubMed ID: 23925889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyproline II helix is a key structural motif of the elastic PEVK segment of titin.
    Ma K; Kan L; Wang K
    Biochemistry; 2001 Mar; 40(12):3427-38. PubMed ID: 11297408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions.
    Young JK; Li D; Abramowitz MC; Morrison TG
    J Virol; 1999 Jul; 73(7):5945-56. PubMed ID: 10364347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane destabilization by N-terminal peptides of viral envelope proteins.
    Düzgüneş N; Shavnin SA
    J Membr Biol; 1992 May; 128(1):71-80. PubMed ID: 1323686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.