These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22170438)
1. Role of waterlogging-responsive genes in shaping interspecific differentiation between two sympatric oak species. Le Provost G; Sulmon C; Frigerio JM; Bodénès C; Kremer A; Plomion C Tree Physiol; 2012 Feb; 32(2):119-34. PubMed ID: 22170438 [TBL] [Abstract][Full Text] [Related]
2. Implication of the suberin pathway in adaptation to waterlogging and hypertrophied lenticels formation in pedunculate oak (Quercus robur L.). Le Provost G; Lesur I; Lalanne C; Da Silva C; Labadie K; Aury JM; Leple JC; Plomion C Tree Physiol; 2016 Nov; 36(11):1330-1342. PubMed ID: 27358207 [TBL] [Abstract][Full Text] [Related]
3. Contrasting growth and adaptive responses of two oak species to flooding stress: role of non-symbiotic haemoglobin. Parent C; Crèvecoeur M; Capelli N; Dat JF Plant Cell Environ; 2011 Jul; 34(7):1113-26. PubMed ID: 21410709 [TBL] [Abstract][Full Text] [Related]
4. Short-term response to waterlogging in Quercus petraea and Quercus robur: A study of the root hydraulic responses and the transcriptional pattern of aquaporins. Rasheed-Depardieu C; Parelle J; Tatin-Froux F; Parent C; Capelli N Plant Physiol Biochem; 2015 Dec; 97():323-30. PubMed ID: 26519820 [TBL] [Abstract][Full Text] [Related]
5. Intra- and interspecific diversity in the response to waterlogging of two co-occurring white oak species (Quercus robur and Q. petraea). Parelle J; Brendel O; Jolivet Y; Dreyer E Tree Physiol; 2007 Jul; 27(7):1027-34. PubMed ID: 17403656 [TBL] [Abstract][Full Text] [Related]
6. Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Parelle J; Zapater M; Scotti-Saintagne C; Kremer A; Jolivet Y; Dreyer E; Brendel O Plant Cell Environ; 2007 Apr; 30(4):422-34. PubMed ID: 17324229 [TBL] [Abstract][Full Text] [Related]
7. Gene expression and genetic divergence in oak species highlight adaptive genes to soil water constraints. Le Provost G; Brachi B; Lesur I; Lalanne C; Labadie K; Aury JM; Da Silva C; Postolache D; Leroy T; Plomion C Plant Physiol; 2022 Nov; 190(4):2466-2483. PubMed ID: 36066428 [TBL] [Abstract][Full Text] [Related]
8. Identification of adaptation-specific differences in mRNA expression of sessile and pedunculate oak based on osmotic-stress-induced genes. Porth I; Koch M; Berenyi M; Burg A; Burg K Tree Physiol; 2005 Oct; 25(10):1317-29. PubMed ID: 16076780 [TBL] [Abstract][Full Text] [Related]
9. AFLP markers demonstrate local genetic differentiation between two indigenous oak species [ Quercus robur L. and Quercus petraea (Matt.) Liebl.] in Flemish populations. Coart E; Lamote V; De Loose M; Van Bockstaele E; Lootens P; Roldán-Ruiz I Theor Appl Genet; 2002 Aug; 105(2-3):431-439. PubMed ID: 12582548 [TBL] [Abstract][Full Text] [Related]
10. Regeneration patterns of European oak species (Quercus petraea (Matt.) Liebl., Quercus robur L.) in dependence of environment and neighborhood. Annighöfer P; Beckschäfer P; Vor T; Ammer C PLoS One; 2015; 10(8):e0134935. PubMed ID: 26266803 [TBL] [Abstract][Full Text] [Related]
11. MATING SYSTEM AND ASYMMETRIC HYBRIDIZATION IN A MIXED STAND OF EUROPEAN OAKS. Bacilieri R; Ducousso A; Petit RJ; Kremer A Evolution; 1996 Apr; 50(2):900-908. PubMed ID: 28568948 [TBL] [Abstract][Full Text] [Related]
12. Differential radial growth patterns between beech (Fagus sylvatica L.) and oak (Quercus robur L.) on periodically waterlogged soils. Scharnweber T; Manthey M; Wilmking M Tree Physiol; 2013 Apr; 33(4):425-37. PubMed ID: 23564694 [TBL] [Abstract][Full Text] [Related]
13. Distribution of genomic regions differentiating oak species assessed by QTL detection. Saintagne C; Bodénès C; Barreneche T; Pot D; Plomion C; Kremer A Heredity (Edinb); 2004 Jan; 92(1):20-30. PubMed ID: 14508500 [TBL] [Abstract][Full Text] [Related]
14. Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species. Ferner E; Rennenberg H; Kreuzwieser J Tree Physiol; 2012 Feb; 32(2):135-45. PubMed ID: 22367762 [TBL] [Abstract][Full Text] [Related]
15. A novel nonsymbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. Parent C; Berger A; Folzer H; Dat J; Crevècoeur M; Badot PM; Capelli N New Phytol; 2008; 177(1):142-154. PubMed ID: 17986182 [TBL] [Abstract][Full Text] [Related]
16. Inter- and intra-specific variability in isoprene production and photosynthesis of Central European oak species. Steinbrecher R; Contran N; Gugerli F; Schnitzler JP; Zimmer I; Menard T; Günthardt-Goerg MS Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():148-56. PubMed ID: 23279295 [TBL] [Abstract][Full Text] [Related]
17. Biomass and nutrient content of sessile oak (Quercus petraea (Matt.) Liebl.) and beech (Fagus sylvatica L.) stem and branches in a mixed stand in southern Belgium. André F; Jonard M; Ponette Q Sci Total Environ; 2010 May; 408(11):2285-94. PubMed ID: 20231032 [TBL] [Abstract][Full Text] [Related]
18. [Genetic differentiation of pedunculate oak Quercus robur L. in the European part of Russia based on RAPD markers]. Iakovlev IA; Kleinschmidt J Genetika; 2002 Feb; 38(2):207-15. PubMed ID: 11898612 [TBL] [Abstract][Full Text] [Related]
19. Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Qi XH; Xu XW; Lin XJ; Zhang WJ; Chen XH Genomics; 2012 Mar; 99(3):160-8. PubMed ID: 22240004 [TBL] [Abstract][Full Text] [Related]
20. [Genetic variation and differentiation in population of Japanese emperor oak (Quercus dentata Thunb.) and Mongolian oak (quercus mongolica fisch. ex ledeb.) in the south of the Russian far east]. Potenko VV; Koren' OG; Verkholat VP Genetika; 2007 Apr; 43(4):489-98. PubMed ID: 17555125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]