BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22170593)

  • 21. Oxidative and photochemical processes for the removal of galaxolide and tonalide from wastewater.
    Santiago-Morales J; Gómez MJ; Herrera S; Fernández-Alba AR; García-Calvo E; Rosal R
    Water Res; 2012 Sep; 46(14):4435-47. PubMed ID: 22709983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of titanium dioxide (TiO2) nano-objects, and their aggregates and agglomerates greater than 100nm (NOAA) on microbes under UV irradiation.
    Yamada I; Nomura K; Iwahashi H; Horie M
    Chemosphere; 2016 Jan; 143():123-7. PubMed ID: 25956024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photo-induced toxicity of titanium dioxide nanoparticles to Daphnia magna under natural sunlight.
    Mansfield CM; Alloy MM; Hamilton J; Verbeck GF; Newton K; Klaine SJ; Roberts AP
    Chemosphere; 2015 Feb; 120():206-10. PubMed ID: 25062026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of titanium dioxide nanoparticles and UV irradiation on photocatalytic degradation of Imidaclopride.
    Ahmari H; Heris SZ; Khayyat MH
    Environ Technol; 2018 Feb; 39(4):536-547. PubMed ID: 28287906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G; Liu X; Su C
    Environ Sci Technol; 2012 Jul; 46(13):7142-50. PubMed ID: 22681399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heavy metal uptake and toxicity in the presence of titanium dioxide nanoparticles: a factorial approach using Daphnia magna.
    Rosenfeldt RR; Seitz F; Schulz R; Bundschuh M
    Environ Sci Technol; 2014 Jun; 48(12):6965-72. PubMed ID: 24847969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution.
    Ma H; Wallis LK; Diamond S; Li S; Canas-Carrell J; Parra A
    Environ Pollut; 2014 Oct; 193():165-172. PubMed ID: 25033018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid adaptation of
    Ishimota M; Tajiki-Nishino R; Fukuyama T; Tomiyama N
    J Environ Sci Health B; 2020; 55(5):429-437. PubMed ID: 32065017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mixture toxicity of three toxicants with similar and dissimilar modes of action to Daphnia magna.
    Syberg K; Elleby A; Pedersen H; Cedergreen N; Forbes VE
    Ecotoxicol Environ Saf; 2008 Mar; 69(3):428-36. PubMed ID: 17631961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genotoxic and cytotoxic effects of the formulated insecticide Aficida on Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces: Poeciliidae).
    Candioti JV; Soloneski S; Larramendy ML
    Mutat Res; 2010 Dec; 703(2):180-6. PubMed ID: 20816847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is ultraviolet radiation a synergistic stressor in combined exposures? The case study of Daphnia magna exposure to UV and carbendazim.
    Ribeiro F; Ferreira NC; Ferreira A; Soares AM; Loureiro S
    Aquat Toxicol; 2011 Mar; 102(1-2):114-22. PubMed ID: 21333264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined effect of UV-irradiation and TiO₂-nanoparticles on the predator-prey interaction of gammarids and mayfly nymphs.
    Kalčíková G; Englert D; Rosenfeldt RR; Seitz F; Schulz R; Bundschuh M
    Environ Pollut; 2014 Mar; 186():136-40. PubMed ID: 24370671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-monotonic concentration-response relationship of TiO(2) nanoparticles in freshwater cladocerans under environmentally relevant UV-A light.
    Kim J; Lee S; Kim CM; Seo J; Park Y; Kwon D; Lee SH; Yoon TH; Choi K
    Ecotoxicol Environ Saf; 2014 Mar; 101():240-7. PubMed ID: 24507152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UV irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity.
    Sun J; Guo LH; Zhang H; Zhao L
    Environ Sci Technol; 2014 Oct; 48(20):11962-8. PubMed ID: 25262667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst.
    Uğurlu M; Karaoğlu MH
    Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation mechanism and the toxicity assessment in TiO2 photocatalysis and photolysis of parathion.
    Kim TS; Kim JK; Choi K; Stenstrom MK; Zoh KD
    Chemosphere; 2006 Feb; 62(6):926-33. PubMed ID: 16051312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system.
    Iswarya V; Palanivel A; Chandrasekaran N; Mukherjee A
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11998-12013. PubMed ID: 30827021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sublethal and lethal effects on Rhinella arenarum (Anura, Bufonidae) tadpoles exerted by the pirimicarb-containing technical formulation insecticide Aficida.
    Vera Candioti J; Natale GS; Soloneski S; Ronco AE; Larramendy ML
    Chemosphere; 2010 Jan; 78(3):249-55. PubMed ID: 19954811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical tolerance related to the ABC transporter gene and DNA methylation in cladocera (Daphnia magna).
    Ishimota M; Kodama M; Tomiyama N; Ohyama K
    Environ Toxicol; 2024 Apr; 39(4):1978-1988. PubMed ID: 38073494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanosized titanium dioxide influences copper-induced toxicity during aging as a function of environmental conditions.
    Rosenfeldt RR; Seitz F; Haigis AC; Höger J; Zubrod JP; Schulz R; Bundschuh M
    Environ Toxicol Chem; 2016 Jul; 35(7):1766-74. PubMed ID: 26640248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.