BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22170786)

  • 1. Multi-dimensional respiratory motion tracking from markerless optical surface imaging based on deformable mesh registration.
    Schaerer J; Fassi A; Riboldi M; Cerveri P; Baroni G; Sarrut D
    Phys Med Biol; 2012 Jan; 57(2):357-73. PubMed ID: 22170786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate.
    Fassi A; Schaerer J; Fernandes M; Riboldi M; Sarrut D; Baroni G
    Int J Radiat Oncol Biol Phys; 2014 Jan; 88(1):182-8. PubMed ID: 24331665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of breathing motion in image-guided PBS proton therapy: comparative analysis of optical and electromagnetic technologies.
    Fattori G; Safai S; Carmona PF; Peroni M; Perrin R; Weber DC; Lomax AJ
    Radiat Oncol; 2017 Mar; 12(1):63. PubMed ID: 28359341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker-less Respiratory motion tracking.
    Berkels B; Bauer S; Ettl S; Arold O; Hornegger J; Rumpf M
    Med Phys; 2013 Sep; 40(9):091703. PubMed ID: 24007136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for abdominal respiratory motion tracking.
    Spinczyk D; Karwan A; Copik M
    Comput Aided Surg; 2014; 19(1-3):34-47. PubMed ID: 24720494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An externally and internally deformable, programmable lung motion phantom.
    Cheung Y; Sawant A
    Med Phys; 2015 May; 42(5):2585-93. PubMed ID: 25979050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformable motion reconstruction for scanned proton beam therapy using on-line x-ray imaging.
    Zhang Y; Knopf A; Tanner C; Boye D; Lomax AJ
    Phys Med Biol; 2013 Dec; 58(24):8621-45. PubMed ID: 24256693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An autotuning respiration compensation system based on ultrasound image tracking.
    Kuo CC; Chuang HC; Teng KT; Hsu HY; Tien DC; Wu CJ; Jeng SC; Chiou JF
    J Xray Sci Technol; 2016 Nov; 24(6):875-892. PubMed ID: 27612051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A monoscopic method for real-time tumour tracking using combined occasional x-ray imaging and continuous respiratory monitoring.
    Cho B; Suh Y; Dieterich S; Keall PJ
    Phys Med Biol; 2008 Jun; 53(11):2837-55. PubMed ID: 18460750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction.
    Povšič K; Jezeršek M; Možina J
    Physiol Meas; 2015 Jul; 36(7):1497-516. PubMed ID: 26020444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical use of iterative 4D-cone beam computed tomography reconstructions to investigate respiratory tumor motion in lung cancer patients.
    Schmidt ML; Poulsen PR; Toftegaard J; Hoffmann L; Hansen D; Sørensen TS
    Acta Oncol; 2014 Aug; 53(8):1107-13. PubMed ID: 24957556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive prediction of respiratory motion for motion compensation radiotherapy.
    Ren Q; Nishioka S; Shirato H; Berbeco RI
    Phys Med Biol; 2007 Nov; 52(22):6651-61. PubMed ID: 17975289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel spirometry based on optical surface imaging.
    Li G; Huang H; Wei J; Li DG; Chen Q; Gaebler CP; Sullivan J; Zatcky J; Rimner A; Mechalakos J
    Med Phys; 2015 Apr; 42(4):1690-7. PubMed ID: 25832058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking.
    Sawant A; Smith RL; Venkat RB; Santanam L; Cho B; Poulsen P; Cattell H; Newell LJ; Parikh P; Keall PJ
    Int J Radiat Oncol Biol Phys; 2009 Jun; 74(2):575-82. PubMed ID: 19327907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markerless motion tracking of awake animals in positron emission tomography.
    Kyme A; Se S; Meikle S; Angelis G; Ryder W; Popovic K; Yatigammana D; Fulton R
    IEEE Trans Med Imaging; 2014 Nov; 33(11):2180-90. PubMed ID: 24988591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Iterative Closest Point Registration Accuracy for Different Phantom Surfaces Captured by an Optical 3D Sensor in Radiotherapy.
    Krell G; Saeid Nezhad N; Walke M; Al-Hamadi A; Gademann G
    Comput Math Methods Med; 2017; 2017():2938504. PubMed ID: 28163773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of optical-surface-imaging-based spirometry for respiratory surrogating in radiotherapy.
    Li G; Wei J; Huang H; Chen Q; Gaebler CP; Lin T; Yuan A; Rimner A; Mechalakos J
    Med Phys; 2016 Mar; 43(3):1348-60. PubMed ID: 26936719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robustness of external/internal correlation models for real-time tumor tracking to breathing motion variations.
    Seregni M; Cerveri P; Riboldi M; Pella A; Baroni G
    Phys Med Biol; 2012 Nov; 57(21):7053-74. PubMed ID: 23053391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Markerless head motion tracking and event-by-event correction in brain PET.
    Zeng T; Lu Y; Jiang W; Zheng J; Zhang J; Gravel P; Wan Q; Fontaine K; Mulnix T; Jiang Y; Yang Z; Revilla EM; Naganawa M; Toyonaga T; Henry S; Zhang X; Cao T; Hu L; Carson RE
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37983915
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.