These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22171067)

  • 1. Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency.
    Bathellier B; Steinmann T; Barth FG; Casas J
    J R Soc Interface; 2012 Jun; 9(71):1131-43. PubMed ID: 22171067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of cricket and spider motion-sensing hairs to airflow pulsations.
    Kant R; Humphrey JA
    J R Soc Interface; 2009 Nov; 6(40):1047-64. PubMed ID: 19324674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing fluctuating airflow with spider silk.
    Zhou J; Miles RN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12120-12125. PubMed ID: 29087323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets.
    Joshi K; Mian A; Miller J
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27322099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling arthropod filiform hair motion using the penalty immersed boundary method.
    Heys JJ; Gedeon T; Knott BC; Kim Y
    J Biomech; 2008; 41(5):977-84. PubMed ID: 18255073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spider mechanoreceptors.
    Barth FG
    Curr Opin Neurobiol; 2004 Aug; 14(4):415-22. PubMed ID: 15321061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscosity-mediated motion coupling between pairs of trichobothria on the leg of the spider Cupiennius salei.
    Bathellier B; Barth FG; Albert JT; Humphrey JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Aug; 191(8):733-46. PubMed ID: 16041533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hair canopy of cricket sensory system tuned to predator signals.
    Magal C; Dangles O; Caparroy P; Casas J
    J Theor Biol; 2006 Aug; 241(3):459-66. PubMed ID: 16427653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance assessment of bio-inspired systems: flow sensing MEMS hairs.
    Droogendijk H; Casas J; Steinmann T; Krijnen GJ
    Bioinspir Biomim; 2014 Dec; 10(1):016001. PubMed ID: 25524894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomimetic accelerometer inspired by the cricket's clavate hair.
    Droogendijk H; de Boer MJ; Sanders RG; Krijnen GJ
    J R Soc Interface; 2014 Aug; 11(97):20140438. PubMed ID: 24920115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between arthropod filiform hairs in a fluid environment.
    Cummins B; Gedeon T; Klapper I; Cortez R
    J Theor Biol; 2007 Jul; 247(2):266-80. PubMed ID: 17434184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arthropod touch reception: structure and mechanics of the basal part of a spider tactile hair.
    Barth FG; Németh SS; Friedrich OC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Jul; 190(7):523-30. PubMed ID: 15106014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward cell-inspired materials that feel: measurements and modeling of mechanotransduction in droplet-based, multi-membrane arrays.
    Tamaddoni N; Sarles SA
    Bioinspir Biomim; 2016 Apr; 11(3):036008. PubMed ID: 27127199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force transformation in spider strain sensors: white light interferometry.
    Schaber CF; Gorb SN; Barth FG
    J R Soc Interface; 2012 Jun; 9(71):1254-64. PubMed ID: 22031733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of aerodynamic and electrostatic sensing in mechanoreceptor arthropod hairs.
    Palmer RA; Chenchiah IV; Robert D
    J Theor Biol; 2021 Dec; 530():110871. PubMed ID: 34411607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arthropod touch reception: stimulus transformation and finite element model of spider tactile hairs.
    Dechant HE; Rammerstorfer FG; Barth FG
    J Comp Physiol A; 2001 May; 187(4):313-22. PubMed ID: 11467504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bumblebee hairs as electric and air motion sensors: theoretical analysis of an isolated hair.
    Koh K; Robert D
    J R Soc Interface; 2020 Jul; 17(168):20200146. PubMed ID: 32634368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative contributions of organ shape and receptor arrangement to the design of cricket's cercal system.
    Dangles O; Steinmann T; Pierre D; Vannier F; Casas J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jul; 194(7):653-63. PubMed ID: 18553087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ontogeny of air-motion sensing in cricket.
    Dangles O; Pierre D; Magal C; Vannier F; Casas J
    J Exp Biol; 2006 Nov; 209(Pt 21):4363-70. PubMed ID: 17050851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arthropod mechanoreceptive hairs: modeling the directionality of the joint.
    Dechant HE; Hössl B; Rammerstorfer FG; Barth FG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1271-8. PubMed ID: 16896686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.