These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22171067)

  • 21. Arthropod touch reception: spider hair sensilla as rapid touch detectors.
    Albert JT; Friedrich OC; Dechant HE; Barth FG
    J Comp Physiol A; 2001 May; 187(4):303-12. PubMed ID: 11467503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How to catch the wind: spider hairs specialized for sensing the movement of air.
    Barth FG
    Naturwissenschaften; 2000 Feb; 87(2):51-8. PubMed ID: 10663135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential effects of nitric oxide on the responsiveness of tactile hairs.
    Schuppe H; Newland PL
    Invert Neurosci; 2011 Dec; 11(2):85-90. PubMed ID: 21573755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Information theoretic analysis of dynamical encoding by filiform mechanoreceptors in the cricket cercal system.
    Roddey JC; Jacobs GA
    J Neurophysiol; 1996 Apr; 75(4):1365-76. PubMed ID: 8727383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Why do insects have such a high density of flow-sensing hairs? Insights from the hydromechanics of biomimetic MEMS sensors.
    Casas J; Steinmann T; Krijnen G
    J R Soc Interface; 2010 Oct; 7(51):1487-95. PubMed ID: 20427334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The morphological heterogeneity of cricket flow-sensing hairs conveys the complex flow signature of predator attacks.
    Steinmann T; Casas J
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28637919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei).
    McConney ME; Schaber CF; Julian MD; Eberhardt WC; Humphrey JA; Barth FG; Tsukruk VV
    J R Soc Interface; 2009 Aug; 6(37):681-94. PubMed ID: 19091682
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A model of filiform hair distribution on the cricket cercus.
    Heys JJ; Rajaraman PK; Gedeon T; Miller JP
    PLoS One; 2012; 7(10):e46588. PubMed ID: 23056357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agonistic signals received by an arthropod filiform hair allude to the prevalence of near-field sound communication.
    Santer RD; Hebets EA
    Proc Biol Sci; 2008 Feb; 275(1633):363-8. PubMed ID: 18055386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational fluid dynamics model of viscous coupling of hairs.
    Lewin GC; Hallam J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Jun; 196(6):385-95. PubMed ID: 20383713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural mapping of direction and frequency in the cricket cercal sensory system.
    Paydar S; Doan CA; Jacobs GA
    J Neurosci; 1999 Mar; 19(5):1771-81. PubMed ID: 10024362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The aerodynamic signature of running spiders.
    Casas J; Steinmann T; Dangles O
    PLoS One; 2008 May; 3(5):e2116. PubMed ID: 18461167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spider joint hair sensilla: adaptation to proprioreceptive stimulation.
    Schaber CF; Barth FG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Feb; 201(2):235-48. PubMed ID: 25398577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A two-layer outer hair cell model with orthotropic piezoelectric properties: correlation of cell resonant frequencies with tuning in the cochlea.
    Lim KM; Li H
    J Biomech; 2007; 40(6):1362-71. PubMed ID: 16824534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavioral response to antennal tactile stimulation in the field cricket Gryllus bimaculatus.
    Okada J; Akamine S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jul; 198(7):557-65. PubMed ID: 22534774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages.
    Steinmann T; Casas J; Krijnen G; Dangles O
    J Exp Biol; 2006 Nov; 209(Pt 21):4398-408. PubMed ID: 17050855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Configuration optimization of bionic piezoelectric hair sensor for acoustic/tactile detection.
    Wang Y; Zhao J; Xia Y; Liu P
    Bioinspir Biomim; 2020 Aug; 15(5):056015. PubMed ID: 32357350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Textbook cricket goes to the field: the ecological scene of the neuroethological play.
    Dangles O; Casas J; Coolen I
    J Exp Biol; 2006 Feb; 209(Pt 3):393-8. PubMed ID: 16424089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for air movement signals in the agonistic behaviour of a nocturnal arachnid (order Amblypygi).
    Santer RD; Hebets EA
    PLoS One; 2011; 6(8):e22473. PubMed ID: 21853035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.