These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 22171293)
21. Design and optimization of gastro-retentive microballoons for enhanced bioavailability of cinnarizine. Ammar HO; Ghorab M; Kamel R; Salama AH Drug Deliv Transl Res; 2016 Jun; 6(3):210-24. PubMed ID: 26832133 [TBL] [Abstract][Full Text] [Related]
22. Formulation and evaluation of gastroretentive microballoons containing baclofen for a floating oral controlled drug delivery system. Dube TS; Ranpise NS; Ranade AN Curr Drug Deliv; 2014; 11(6):805-16. PubMed ID: 24730440 [TBL] [Abstract][Full Text] [Related]
23. Chitosan-based Floating Microspheres of Trimetazidin Dihydrochloride; Preparation and In vitro Characterization. El-Nahas HM; Hosny KM Indian J Pharm Sci; 2011 Jul; 73(4):397-403. PubMed ID: 22707823 [TBL] [Abstract][Full Text] [Related]
24. Conception and evaluation of sustained release polymeric matrix beads for enhanced gastric retention. Khobragade DS; Parshuramkar PR; Ujjainkar AP; Mahendra AM; Phapal SM; Patil AT Curr Drug Deliv; 2009 Jul; 6(3):249-54. PubMed ID: 19604138 [TBL] [Abstract][Full Text] [Related]
25. Hollow microspheres of diclofenac sodium - a gastroretentive controlled delivery system. Bv B; R D; S B; Abraham S; Furtado S; V M Pak J Pharm Sci; 2008 Oct; 21(4):451-4. PubMed ID: 18930869 [TBL] [Abstract][Full Text] [Related]
26. Development and characterization of floating microballoons for oral delivery of cinnarizine by a factorial design. Varshosaz J; Tabbakhian M; Zahrooni M J Microencapsul; 2007 May; 24(3):253-62. PubMed ID: 17454436 [TBL] [Abstract][Full Text] [Related]
27. Development and evaluation of a floating multiparticulate gastroretentive system for modified release of AZT. Yoshida VM; de Oliveira Junior JM; Gonçalves MM; Vila MM; Chaud MV AAPS PharmSciTech; 2011 Jun; 12(2):658-64. PubMed ID: 21562720 [TBL] [Abstract][Full Text] [Related]
28. Development and evaluation of dual controlled release microballoons containing riboflavin and citric acid: in vitro and in vivo evaluation. Singh AN; Pathak K J Microencapsul; 2011; 28(5):442-54. PubMed ID: 21554157 [TBL] [Abstract][Full Text] [Related]
29. Pantoprazole Sodium Loaded Microballoons for the Systemic Approach: Gupta P; Kumar M; Kaushik D Adv Pharm Bull; 2017 Sep; 7(3):461-467. PubMed ID: 29071229 [No Abstract] [Full Text] [Related]
30. Effect of various polymers concentrations on physicochemical properties of floating microspheres. Jagtap YM; Bhujbal RK; Ranade AN; Ranpise NS Indian J Pharm Sci; 2012 Nov; 74(6):512-20. PubMed ID: 23798776 [TBL] [Abstract][Full Text] [Related]
31. Physicochemical properties to determine the buoyancy of hollow microspheres (microballoons) prepared by the emulsion solvent diffusion method. Sato Y; Kawashima Y; Takeuchi H; Yamamoto H Eur J Pharm Biopharm; 2003 May; 55(3):297-304. PubMed ID: 12754004 [TBL] [Abstract][Full Text] [Related]
32. Expert Design and Optimization of Ethyl Cellulose-Poly (ε-caprolactone) Blend Microparticles For Gastro-Retentive Floating Delivery of Metformin Hydrochloride. Salatin S; Jelvehgari M Curr Drug Deliv; 2021; 18(8):1125-1135. PubMed ID: 33563167 [TBL] [Abstract][Full Text] [Related]
33. Floating microspheres of carvedilol as gastro retentive drug delivery system: 3(2) full factorial design and in vitro evaluation. Nila MV; Sudhir MR; Cinu TA; Aleykutty NA; Jose S Drug Deliv; 2014 Mar; 21(2):110-7. PubMed ID: 24028280 [TBL] [Abstract][Full Text] [Related]
34. Hollow microspheres for use as a floating controlled drug delivery system in the stomach. Kawashima Y; Niwa T; Takeuchi H; Hino T; Itoh Y J Pharm Sci; 1992 Feb; 81(2):135-40. PubMed ID: 1372046 [TBL] [Abstract][Full Text] [Related]
35. Preparation and Characterization of Salbutamol Sulphate Loaded Ethyl Cellulose Microspheres using Water-in-Oil-Oil Emulsion Technique. Nath B; Kanta Nath L; Mazumder B; Kumar P; Sharma N; Pratap Sahu B Iran J Pharm Res; 2010; 9(2):97-105. PubMed ID: 24363714 [TBL] [Abstract][Full Text] [Related]
36. Formulation development and in vitro evaluation of gastroretentive hollow microspheres of famotidine. Chordiya MA; Gangurde HH; Senthilkumaran K; Kothari LP Int J Pharm Investig; 2011 Apr; 1(2):105-11. PubMed ID: 23071929 [TBL] [Abstract][Full Text] [Related]
37. Optimization studies on floating multiparticulate gastroretentive drug delivery system of famotidine. Gupta R; Pathak K Drug Dev Ind Pharm; 2008 Nov; 34(11):1201-8. PubMed ID: 18686085 [TBL] [Abstract][Full Text] [Related]
38. Design and evaluation of a gastroretentive drug delivery system for metformin HCl using synthetic and semi-synthetic polymers. Meka VS; Gorajana A; Dharmanlingam SR; Kolapalli VR Invest Clin; 2013 Dec; 54(4):347-59. PubMed ID: 24502177 [TBL] [Abstract][Full Text] [Related]
39. Controlled release metformin hydrochloride microspheres of ethyl cellulose prepared by different methods and study on the polymer affected parameters. Choudhury PK; Kar M J Microencapsul; 2009 Feb; 26(1):46-53. PubMed ID: 18608813 [TBL] [Abstract][Full Text] [Related]
40. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: preparation and in vitro characterization. Jain SK; Awasthi AM; Jain NK; Agrawal GP J Control Release; 2005 Oct; 107(2):300-9. PubMed ID: 16095748 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]