These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 22171512)

  • 21. Nanotoxicology and in vitro studies: the need of the hour.
    Arora S; Rajwade JM; Paknikar KM
    Toxicol Appl Pharmacol; 2012 Jan; 258(2):151-65. PubMed ID: 22178382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toxicology of nanomaterials used in nanomedicine.
    Zhao J; Castranova V
    J Toxicol Environ Health B Crit Rev; 2011; 14(8):593-632. PubMed ID: 22008094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictive models for nanotoxicology: current challenges and future opportunities.
    Clark KA; White RH; Silbergeld EK
    Regul Toxicol Pharmacol; 2011 Apr; 59(3):361-3. PubMed ID: 21310205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity.
    Fako VE; Furgeson DY
    Adv Drug Deliv Rev; 2009 Jun; 61(6):478-86. PubMed ID: 19389433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancing risk assessment of engineered nanomaterials: application of computational approaches.
    Gajewicz A; Rasulev B; Dinadayalane TC; Urbaszek P; Puzyn T; Leszczynska D; Leszczynski J
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1663-93. PubMed ID: 22664229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation.
    Powers KW; Brown SC; Krishna VB; Wasdo SC; Moudgil BM; Roberts SM
    Toxicol Sci; 2006 Apr; 90(2):296-303. PubMed ID: 16407094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices.
    Bouwmeester H; Lynch I; Marvin HJ; Dawson KA; Berges M; Braguer D; Byrne HJ; Casey A; Chambers G; Clift MJ; Elia G; Fernandes TF; Fjellsbø LB; Hatto P; Juillerat L; Klein C; Kreyling WG; Nickel C; Riediker M; Stone V
    Nanotoxicology; 2011 Mar; 5(1):1-11. PubMed ID: 21417684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determining acute health hazard ratings in the absence of applicable toxicological data.
    Simmons F; Quigley D; Freshwater D; Whyte H; Boada-Clista L; Laul JC
    J Occup Environ Hyg; 2007 Nov; 4(11):841-7. PubMed ID: 17885911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rationale of genotoxicity testing of nanomaterials: regulatory requirements and appropriateness of available OECD test guidelines.
    Warheit DB; Donner EM
    Nanotoxicology; 2010 Dec; 4():409-13. PubMed ID: 20925448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational strategies for predicting the potential risks associated with nanotechnology.
    Barnard AS
    Nanoscale; 2009 Oct; 1(1):89-95. PubMed ID: 20644864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanotoxicology and nanotechnology: new findings from the NIEHS and Superfund Research Program scientific community.
    Carlin DJ
    Rev Environ Health; 2014; 29(1-2):105-7. PubMed ID: 24695034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Toxicogenomics in hazard assessment of chemicals].
    Kostka G; Liszewska M; Urbanek-Olejnik K
    Rocz Panstw Zakl Hig; 2010; 61(2):119-27. PubMed ID: 20839457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advancing exposure characterization for chemical evaluation and risk assessment.
    Cohen Hubal EA; Richard A; Aylward L; Edwards S; Gallagher J; Goldsmith MR; Isukapalli S; Tornero-Velez R; Weber E; Kavlock R
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):299-313. PubMed ID: 20574904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [On concept of toxicological studies, methodology of risk assessment, metods of identification and quantity determining of nanomaterials].
    Onishchenko GG; Tutel'ian VA
    Vopr Pitan; 2007; 76(6):4-8. PubMed ID: 18219933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exposure-driven risk assessment: applying exposure-based waiving of toxicity tests under REACH.
    Rowbotham AL; Gibson RM
    Food Chem Toxicol; 2011 Aug; 49(8):1661-73. PubMed ID: 21458516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [General and specific aspects of the toxic properties of nanoparticles and other chemical substances in the context of classical toxicology].
    Zholdakova ZI; Sinitsyna OO; Kharchevnikova NV
    Gig Sanit; 2008; (6):12-6. PubMed ID: 19198250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical methods to assess nanoparticle toxicity.
    Marquis BJ; Love SA; Braun KL; Haynes CL
    Analyst; 2009 Mar; 134(3):425-39. PubMed ID: 19238274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Alternative methods to animal experiments. What can they afford in the safety testing of chemical substances under REACH?].
    Lilienblum W
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2008 Dec; 51(12):1434-43. PubMed ID: 19137219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials.
    Liu Q; Wang X; Xia T
    Anal Bioanal Chem; 2018 Sep; 410(24):6097-6111. PubMed ID: 30066194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.