These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 2217159)
1. Molecular interactions in protein crystals: solvent accessible surface and stability. Islam SA; Weaver DL Proteins; 1990; 8(1):1-5. PubMed ID: 2217159 [TBL] [Abstract][Full Text] [Related]
2. Analysis of accessible surface of residues in proteins. Lins L; Thomas A; Brasseur R Protein Sci; 2003 Jul; 12(7):1406-17. PubMed ID: 12824487 [TBL] [Abstract][Full Text] [Related]
3. Molecular surface generation using a variable-radius solvent probe. Bhat S; Purisima EO Proteins; 2006 Jan; 62(1):244-61. PubMed ID: 16287115 [TBL] [Abstract][Full Text] [Related]
4. Efficient approximate all-atom solvent accessible surface area method parameterized for folded and denatured protein conformations. Guvench O; Brooks CL J Comput Chem; 2004 Jun; 25(8):1005-14. PubMed ID: 15067676 [TBL] [Abstract][Full Text] [Related]
5. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model. Vorobjev YN; Almagro JC; Hermans J Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412 [TBL] [Abstract][Full Text] [Related]
6. Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence. Gilis D; Rooman M J Mol Biol; 1997 Sep; 272(2):276-90. PubMed ID: 9299354 [TBL] [Abstract][Full Text] [Related]
7. Crucial importance of translational entropy of water in pressure denaturation of proteins. Harano Y; Kinoshita M J Chem Phys; 2006 Jul; 125(2):24910. PubMed ID: 16848614 [TBL] [Abstract][Full Text] [Related]
8. Protein stability and surface electrostatics: a charged relationship. Strickler SS; Gribenko AV; Gribenko AV; Keiffer TR; Tomlinson J; Reihle T; Loladze VV; Makhatadze GI Biochemistry; 2006 Mar; 45(9):2761-6. PubMed ID: 16503630 [TBL] [Abstract][Full Text] [Related]
9. Effects of frustration, confinement, and surface interactions on the dimerization of an off-lattice beta-barrel protein. Griffin MA; Friedel M; Shea JE J Chem Phys; 2005 Nov; 123(17):174707. PubMed ID: 16375557 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Vagenende V; Yap MG; Trout BL Biochemistry; 2009 Nov; 48(46):11084-96. PubMed ID: 19817484 [TBL] [Abstract][Full Text] [Related]
11. The effect of vicinal polar and charged groups on hydrophobic hydration. Cheng YK; Rossky PJ Biopolymers; 1999 Dec; 50(7):742-50. PubMed ID: 10547529 [TBL] [Abstract][Full Text] [Related]
12. A molecular dynamics study of the correlations between solvent-accessible surface, molecular volume, and folding state. Floriano WB; Domont GB; Nascimento MA J Phys Chem B; 2007 Feb; 111(7):1893-9. PubMed ID: 17261064 [TBL] [Abstract][Full Text] [Related]
13. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. Chalikian TV; Totrov M; Abagyan R; Breslauer KJ J Mol Biol; 1996 Jul; 260(4):588-603. PubMed ID: 8759322 [TBL] [Abstract][Full Text] [Related]
14. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force. Shimizu S; Chan HS Proteins; 2002 Dec; 49(4):560-6. PubMed ID: 12402364 [TBL] [Abstract][Full Text] [Related]
15. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins. Shimizu S; Chan HS Proteins; 2002 Jul; 48(1):15-30. PubMed ID: 12012334 [TBL] [Abstract][Full Text] [Related]
17. Partial molar volume of proteins studied by the three-dimensional reference interaction site model theory. Imai T; Kovalenko A; Hirata F J Phys Chem B; 2005 Apr; 109(14):6658-65. PubMed ID: 16851748 [TBL] [Abstract][Full Text] [Related]
18. The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions. Spassov VZ; Karshikoff AD; Ladenstein R Protein Sci; 1995 Aug; 4(8):1516-27. PubMed ID: 8520477 [TBL] [Abstract][Full Text] [Related]
19. Free energy determinants of secondary structure formation: I. alpha-Helices. Yang AS; Honig B J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056 [TBL] [Abstract][Full Text] [Related]
20. Statistical characterization of salt bridges in proteins. Sarakatsannis JN; Duan Y Proteins; 2005 Sep; 60(4):732-9. PubMed ID: 16021620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]