These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 22171761)
1. Tunable surface plasmon resonance and strong SERS performances of Au opening-nanoshell ordered arrays. Liu G; Li Y; Duan G; Wang J; Changhao ; Liang ; Cai W ACS Appl Mater Interfaces; 2012 Jan; 4(1):1-5. PubMed ID: 22171761 [TBL] [Abstract][Full Text] [Related]
2. Gold binary-structured arrays based on monolayer colloidal crystals and their optical properties. Liu G; Li X; Wang W; Zhou F; Duan G; Li Y; Xu Z; Cai W Small; 2014 Jun; 10(12):2374-81. PubMed ID: 24599634 [TBL] [Abstract][Full Text] [Related]
3. Nanocap array of Au:Ag composite for surface-enhanced Raman scattering. Zhang Y; Wang C; Wang J; Chen L; Li J; Liu Y; Zhao X; Wang Y; Yang J Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():461-7. PubMed ID: 26253437 [TBL] [Abstract][Full Text] [Related]
5. Design of tunable ultraviolet (UV) absorbance by controlling the AgAl co-sputtering deposition. Zhang XY; Chen L; Wang Y; Zhang Y; Yang J; Choi HC; Jung YM Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():37-42. PubMed ID: 29277479 [TBL] [Abstract][Full Text] [Related]
6. Enhanced optical responses of Au@Pd core/shell nanobars. Zhang K; Xiang Y; Wu X; Feng L; He W; Liu J; Zhou W; Xie S Langmuir; 2009 Jan; 25(2):1162-8. PubMed ID: 19090666 [TBL] [Abstract][Full Text] [Related]
7. High-sensitivity Raman scattering substrate based on Au/La(0.7)Sr(0.3)MnO(3) periodic arrays. Wu MC; Chou Y; Chuang CM; Hsu CP; Lin JF; Chen YF; Su WF ACS Appl Mater Interfaces; 2009 Nov; 1(11):2484-90. PubMed ID: 20356118 [TBL] [Abstract][Full Text] [Related]
8. Tunable near-infrared optical properties of three-layered metal nanoshells. Wu D; Xu X; Liu X J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796 [TBL] [Abstract][Full Text] [Related]
9. Widely tunable surface plasmon resonance and uniquely superior SERS performance of Au nanotube network films. Lin Y; Wang L; Zhang H; Wu L; Fan H; Liu X; Zheng R; Tian X; He H Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33823499 [TBL] [Abstract][Full Text] [Related]
10. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering]. Zhai XF; Mu C; Xu DS; Tong LM; Zhu T; Du WM Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2329-32. PubMed ID: 19123400 [TBL] [Abstract][Full Text] [Related]
12. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays. Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896 [TBL] [Abstract][Full Text] [Related]
13. Highly Controllable Surface Plasmon Resonance Property by Heights of Ordered Nanoparticle Arrays Fabricated via a Nonlithographic Route. Zhan Z; Xu R; Mi Y; Zhao H; Lei Y ACS Nano; 2015 Apr; 9(4):4583-90. PubMed ID: 25812724 [TBL] [Abstract][Full Text] [Related]
14. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism. Tognalli NG; Cortés E; Hernández-Nieves AD; Carro P; Usaj G; Balseiro CA; Vela ME; Salvarezza RC; Fainstein A ACS Nano; 2011 Jul; 5(7):5433-43. PubMed ID: 21675769 [TBL] [Abstract][Full Text] [Related]
15. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Mu C; Zhang JP; Xu D Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166 [TBL] [Abstract][Full Text] [Related]
16. Core-shell nanopillars of fullerene C60/C70 loading with colloidal Au nanoparticles: a Raman scattering investigation. Luo Z; Zhao YS; Yang W; Peng A; Ma Y; Fu H; Yao J J Phys Chem A; 2009 Sep; 113(35):9612-6. PubMed ID: 19653673 [TBL] [Abstract][Full Text] [Related]
17. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. Le F; Brandl DW; Urzhumov YA; Wang H; Kundu J; Halas NJ; Aizpurua J; Nordlander P ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602 [TBL] [Abstract][Full Text] [Related]
18. Templated fabrication of metal half-shells for surface-enhanced Raman scattering. Liu X; Linn NC; Sun CH; Jiang P Phys Chem Chem Phys; 2010 Feb; 12(6):1379-87. PubMed ID: 20119616 [TBL] [Abstract][Full Text] [Related]
19. AuAg bimetallic nanoparticles film fabricated based on H2O2-mediated silver reduction and its application. Wang L; Wang F; Shang L; Zhu C; Ren W; Dong S Talanta; 2010 Jun; 82(1):113-7. PubMed ID: 20685444 [TBL] [Abstract][Full Text] [Related]