These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

686 related articles for article (PubMed ID: 22171956)

  • 21. Critical and Optimal Wall Conditions for Coalescence-Induced Droplet Jumping on Textured Superhydrophobic Surfaces.
    Yin C; Wang T; Che Z; Jia M; Sun K
    Langmuir; 2019 Dec; 35(49):16201-16209. PubMed ID: 31738548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Jumping-Droplet Departure.
    Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N
    Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selectively splitting a droplet using superhydrophobic stripes on hydrophilic surfaces.
    Song D; Song B; Hu H; Du X; Zhou F
    Phys Chem Chem Phys; 2015 Jun; 17(21):13800-3. PubMed ID: 25946666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.
    Rykaczewski K
    Langmuir; 2012 May; 28(20):7720-9. PubMed ID: 22548441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive model for ice formation on superhydrophobic surfaces.
    Bahadur V; Mishchenko L; Hatton B; Taylor JA; Aizenberg J; Krupenkin T
    Langmuir; 2011 Dec; 27(23):14143-50. PubMed ID: 21899285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The dynamics of impacting water droplets on alkanethiol self-assembled monolayers with co-adsorbed CH3 and CO2H terminal groups.
    Ukiwe C; Mansouri A; Kwok DY
    J Colloid Interface Sci; 2005 May; 285(2):760-8. PubMed ID: 15837495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of picoliter droplets on superhydrophobic surfaces with ultralow spreading ratios.
    Brown PS; Berson A; Talbot EL; Wood TJ; Schofield WC; Bain CD; Badyal JP
    Langmuir; 2011 Nov; 27(22):13897-903. PubMed ID: 22011196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of water vapor desublimation in the adhesion of an iced droplet to a superhydrophobic surface.
    Boinovich L; Emelyanenko AM
    Langmuir; 2014 Oct; 30(42):12596-601. PubMed ID: 25286023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of droplet evaporation on a superhydrophobic surface.
    McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY
    Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates.
    Sefiane K; Bennacer R
    Adv Colloid Interface Sci; 2009; 147-148():263-71. PubMed ID: 19019321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface.
    Xu H; Chang C; Yi N; Tao P; Song C; Wu J; Deng T; Shang W
    ACS Omega; 2019 Oct; 4(18):17615-17622. PubMed ID: 31681868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes.
    Cha H; Chun JM; Sotelo J; Miljkovic N
    ACS Nano; 2016 Sep; 10(9):8223-32. PubMed ID: 27447844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of superamphiphobic macrotextures on dynamics of viscous liquid droplets.
    Raiyan A; Mclaughlin TS; Annavarapu RK; Sojoudi H
    Sci Rep; 2018 Oct; 8(1):15344. PubMed ID: 30337604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.