These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 22171976)

  • 1. Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: gas phase and cluster calculations.
    Payal RS; Bharath R; Periyasamy G; Balasubramanian S
    J Phys Chem B; 2012 Jan; 116(2):833-40. PubMed ID: 22171976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids.
    Zhang J; Zhang H; Wu J; Zhang J; He J; Xiang J
    Phys Chem Chem Phys; 2010 Feb; 12(8):1941-7. PubMed ID: 20145862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolution of cellulose in room temperature ionic liquids: anion dependence.
    Payal RS; Bejagam KK; Mondal A; Balasubramanian S
    J Phys Chem B; 2015 Jan; 119(4):1654-9. PubMed ID: 25535797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dialkyl phosphate-related ionic liquids as selective solvents for xylan.
    Froschauer C; Hummel M; Laus G; Schottenberger H; Sixta H; Weber HK; Zuckerstätter G
    Biomacromolecules; 2012 Jun; 13(6):1973-80. PubMed ID: 22591036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.
    Cao B; Du J; Du D; Sun H; Zhu X; Fu H
    Carbohydr Polym; 2016 Sep; 149():348-56. PubMed ID: 27261759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum mechanical continuum solvation models for ionic liquids.
    Bernales VS; Marenich AV; Contreras R; Cramer CJ; Truhlar DG
    J Phys Chem B; 2012 Aug; 116(30):9122-9. PubMed ID: 22734466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-bonding and the dissolution mechanism of uracil in an acetate ionic liquid: new insights from NMR spectroscopy and quantum chemical calculations.
    Araújo JM; Pereiro AB; Canongia Lopes JN; Rebelo LP; Marrucho IM
    J Phys Chem B; 2013 Apr; 117(15):4109-20. PubMed ID: 23521702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The presence of functional groups key for biodegradation in ionic liquids: effect on gas solubility.
    Deng Y; Morrissey S; Gathergood N; Delort AM; Husson P; Costa Gomes MF
    ChemSusChem; 2010 Mar; 3(3):377-85. PubMed ID: 20049767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling interactions between lignocellulose and ionic liquids using DFT-D.
    Janesko BG
    Phys Chem Chem Phys; 2011 Jun; 13(23):11393-401. PubMed ID: 21455515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nature of hydrogen bonding in charged hydrogen-bonded complexes and imidazolium-based ionic liquids.
    Izgorodina EI; MacFarlane DR
    J Phys Chem B; 2011 Dec; 115(49):14659-67. PubMed ID: 22011264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational study of erythritol and threitol in the gas state by density functional theory calculations.
    Jesus AJ; Tomé LI; Rosado MT; Leitão ML; Redinha JS
    Carbohydr Res; 2005 Feb; 340(2):283-91. PubMed ID: 15639248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of acetate anion on cellulose dissolution and reaction in imidazolium ionic liquids.
    Du H; Qian X
    Carbohydr Res; 2011 Sep; 346(13):1985-90. PubMed ID: 21704309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine in 1-butyl-3-methylimidazolium acetate and trifluoroacetate ionic liquids: effect of fluorination and hydrogen bonding.
    Podgoršek A; Macchiagodena M; Ramondo F; Costa Gomes MF; Pádua AA
    Chemphyschem; 2012 May; 13(7):1753-63. PubMed ID: 22434786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational approach to nuclear magnetic resonance in 1-Alkyl-3-methylimidazolium ionic liquids.
    Palomar J; Ferro VR; Gilarranz MA; Rodriguez JJ
    J Phys Chem B; 2007 Jan; 111(1):168-80. PubMed ID: 17201441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational analysis of xylan chains.
    Mazeau K; Moine C; Krausz P; Gloaguen V
    Carbohydr Res; 2005 Dec; 340(18):2752-60. PubMed ID: 16288999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zwitterionic conformers of pyrrolysine and their interactions with metal ions--a theoretical study.
    Das G
    J Mol Model; 2013 Aug; 19(8):2981-91. PubMed ID: 23564328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study.
    Liu H; Sale KL; Holmes BM; Simmons BA; Singh S
    J Phys Chem B; 2010 Apr; 114(12):4293-301. PubMed ID: 20218725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study on cation-anion interaction and vibrational spectra of 1-allyl-3-methylimidazolium-based ionic liquids.
    Xuan X; Guo M; Pei Y; Zheng Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1492-9. PubMed ID: 21349759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution of cellulose in ionic liquids: an ab initio molecular dynamics simulation study.
    Payal RS; Balasubramanian S
    Phys Chem Chem Phys; 2014 Sep; 16(33):17458-65. PubMed ID: 25012815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.