BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22172045)

  • 21. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AntEpiSeeker: detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm.
    Wang Y; Liu X; Robbins K; Rekaya R
    BMC Res Notes; 2010 Apr; 3():117. PubMed ID: 20426808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis.
    Gayán J; González-Pérez A; Bermudo F; Sáez ME; Royo JL; Quintas A; Galan JJ; Morón FJ; Ramirez-Lorca R; Real LM; Ruiz A
    BMC Genomics; 2008 Jul; 9():360. PubMed ID: 18667089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Adjusting Ant Colony Optimization Based on Information Entropy for Detecting Epistatic Interactions.
    Guan B; Zhao Y
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30717303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epistasis Test in Meta-Analysis: A Multi-Parameter Markov Chain Monte Carlo Model for Consistency of Evidence.
    Lin C; Chu CM; Su SL
    PLoS One; 2016; 11(4):e0152891. PubMed ID: 27045371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epistasis Detection Based on Epi-GTBN.
    Chen X; Wong KC
    Methods Mol Biol; 2021; 2212():325-335. PubMed ID: 33733365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction.
    Velez DR; White BC; Motsinger AA; Bush WS; Ritchie MD; Williams SM; Moore JH
    Genet Epidemiol; 2007 May; 31(4):306-15. PubMed ID: 17323372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies.
    Abo Alchamlat S; Farnir F
    BMC Bioinformatics; 2017 Mar; 18(1):184. PubMed ID: 28327091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. wtest: an integrated R package for genetic epistasis testing.
    Sun R; Xia X; Chong KC; Zee BC; Wu WKK; Wang MH
    BMC Med Genomics; 2019 Dec; 12(Suppl 9):180. PubMed ID: 31874630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SMMB: a stochastic Markov blanket framework strategy for epistasis detection in GWAS.
    Niel C; Sinoquet C; Dina C; Rocheleau G
    Bioinformatics; 2018 Aug; 34(16):2773-2780. PubMed ID: 29547902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel two-stage approach for epistasis detection in genome-wide case-control studies.
    Liao Z; Zeng Q; Liao B; Li X
    Biochem Genet; 2014 Oct; 52(9-10):403-14. PubMed ID: 24880910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A powerful and efficient two-stage method for detecting gene-to-gene interactions in GWAS.
    Pecanka J; Jonker MA; ; Bochdanovits Z; Van Der Vaart AW
    Biostatistics; 2017 Jul; 18(3):477-494. PubMed ID: 28334077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Belief Degree-Associated Fuzzy Multifactor Dimensionality Reduction Framework for Epistasis Detection.
    Rahaman S; Wong KC
    Methods Mol Biol; 2021; 2212():307-323. PubMed ID: 33733364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ant colony optimization with an automatic adjustment mechanism for detecting epistatic interactions.
    Guan B; Zhao Y; Sun W
    Comput Biol Chem; 2018 Dec; 77():354-362. PubMed ID: 30466044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detecting epistasis with restricted response patterns in pairs of biallelic loci.
    Wirapati P; Forner K; Delgado-Vega A; Alarcón-Riquelme M; Delorenzi M; Wojcik J
    Ann Hum Genet; 2011 Jan; 75(1):133-45. PubMed ID: 21118193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of SNP epistasis effects of quantitative traits using an extended Kempthorne model.
    Mao Y; London NR; Ma L; Dvorkin D; Da Y
    Physiol Genomics; 2006 Dec; 28(1):46-52. PubMed ID: 16940430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A parallelized strategy for epistasis analysis based on Empirical Bayesian Elastic Net models.
    Wen J; Ford CT; Janies D; Shi X
    Bioinformatics; 2020 Jun; 36(12):3803-3810. PubMed ID: 32227194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic interactions effects for cancer disease identification using computational models: a review.
    Manavalan R; Priya S
    Med Biol Eng Comput; 2021 Apr; 59(4):733-758. PubMed ID: 33839998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating statistical epistasis in complex disorders.
    Turton JC; Bullock J; Medway C; Shi H; Brown K; Belbin O; Kalsheker N; Carrasquillo MM; Dickson DW; Graff-Radford NR; Petersen RC; Younkin SG; Morgan K
    J Alzheimers Dis; 2011; 25(4):635-44. PubMed ID: 21483092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A unified model based multifactor dimensionality reduction framework for detecting gene-gene interactions.
    Yu W; Lee S; Park T
    Bioinformatics; 2016 Sep; 32(17):i605-i610. PubMed ID: 27587680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.