BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 22172774)

  • 1. Evoked corticospinal output to the human scalene muscles is altered by lung volume.
    Hudson AL; Taylor JL; Anand A; Gandevia SC; Butler JE
    Respir Physiol Neurobiol; 2012 Mar; 180(2-3):263-8. PubMed ID: 22172774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lung volume on the co-ordinated recruitment of scalene and sternomastoid muscles in humans.
    Hudson AL; Gandevia SC; Butler JE
    J Physiol; 2007 Oct; 584(Pt 1):261-70. PubMed ID: 17690147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of low-intensity motor cortical stimulation on the inspiratory activity in scalene muscles during voluntary and involuntary breathing.
    Petersen NC; Taylor JL; Murray NP; Gandevia SC; Butler JE
    Respir Physiol Neurobiol; 2011 Feb; 175(2):265-71. PubMed ID: 21138775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans.
    Di Lazzaro V; Pilato F; Oliviero A; Dileone M; Saturno E; Mazzone P; Insola A; Profice P; Ranieri F; Capone F; Tonali PA; Rothwell JC
    J Neurophysiol; 2006 Oct; 96(4):1765-71. PubMed ID: 16760345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
    Chen R; Yung D; Li JY
    J Neurophysiol; 2003 Mar; 89(3):1256-64. PubMed ID: 12611955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of voluntary control of respiration on the excitability of the primary motor hand area, evaluated by end-tidal CO2 monitoring.
    Ozaki I; Kurata K
    Clin Neurophysiol; 2015 Nov; 126(11):2162-9. PubMed ID: 25698305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response competition in the primary motor cortex: corticospinal excitability reflects response replacement during simple decisions.
    Michelet T; Duncan GH; Cisek P
    J Neurophysiol; 2010 Jul; 104(1):119-27. PubMed ID: 20445034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent excitation of the opposite motor cortex during transcranial magnetic stimulation to activate the abdominal muscles.
    Tsao H; Galea MP; Hodges PW
    J Neurosci Methods; 2008 Jun; 171(1):132-9. PubMed ID: 18372045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury.
    Thomas SL; Gorassini MA
    J Neurophysiol; 2005 Oct; 94(4):2844-55. PubMed ID: 16000519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subthreshold corticospinal control of anticipatory actions in humans.
    Sangani SG; Raptis HA; Feldman AG
    Behav Brain Res; 2011 Oct; 224(1):145-54. PubMed ID: 21672559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An initial transient-state and reliable measures of corticospinal excitability in TMS studies.
    Schmidt S; Cichy RM; Kraft A; Brocke J; Irlbacher K; Brandt SA
    Clin Neurophysiol; 2009 May; 120(5):987-93. PubMed ID: 19359215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two different effects of transcranial magnetic stimulation to the human motor cortex during the pre-movement period.
    Hashimoto T; Inaba D; Matsumura M; Naito E
    Neurosci Res; 2004 Dec; 50(4):427-36. PubMed ID: 15567480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TMS-evoked silent periods in scalene and parasternal intercostal muscles during voluntary breathing.
    Luu BL; Saboisky JP; Taylor JL; Gandevia SC; Butler JE
    Respir Physiol Neurobiol; 2015 Sep; 216():15-22. PubMed ID: 26025647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor imagery of foot dorsiflexion and gait: effects on corticospinal excitability.
    Bakker M; Overeem S; Snijders AH; Borm G; van Elswijk G; Toni I; Bloem BR
    Clin Neurophysiol; 2008 Nov; 119(11):2519-27. PubMed ID: 18838294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticospinal control of wrist muscles during expectation of a motor perturbation: a transcranial magnetic stimulation study.
    Meziane HB; Spieser L; Pailhous J; Bonnard M
    Behav Brain Res; 2009 Mar; 198(2):459-65. PubMed ID: 19073218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.