These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Helicase SUV3, polynucleotide phosphorylase, and mitochondrial polyadenylation polymerase form a transient complex to modulate mitochondrial mRNA polyadenylated tail lengths in response to energetic changes. Wang DD; Guo XE; Modrek AS; Chen CF; Chen PL; Lee WH J Biol Chem; 2014 Jun; 289(24):16727-35. PubMed ID: 24770417 [TBL] [Abstract][Full Text] [Related]
3. Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(A) polymerase. Bai Y; Srivastava SK; Chang JH; Manley JL; Tong L Mol Cell; 2011 Feb; 41(3):311-20. PubMed ID: 21292163 [TBL] [Abstract][Full Text] [Related]
4. LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria. Chujo T; Ohira T; Sakaguchi Y; Goshima N; Nomura N; Nagao A; Suzuki T Nucleic Acids Res; 2012 Sep; 40(16):8033-47. PubMed ID: 22661577 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial Polyadenylation Is a One-Step Process Required for mRNA Integrity and tRNA Maturation. Bratic A; Clemente P; Calvo-Garrido J; Maffezzini C; Felser A; Wibom R; Wedell A; Freyer C; Wredenberg A PLoS Genet; 2016 May; 12(5):e1006028. PubMed ID: 27176048 [TBL] [Abstract][Full Text] [Related]
6. Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase. Nagaike T; Suzuki T; Katoh T; Ueda T J Biol Chem; 2005 May; 280(20):19721-7. PubMed ID: 15769737 [TBL] [Abstract][Full Text] [Related]
7. Structure of mitochondrial poly(A) RNA polymerase reveals the structural basis for dimerization, ATP selectivity and the SPAX4 disease phenotype. Lapkouski M; Hällberg BM Nucleic Acids Res; 2015 Oct; 43(18):9065-75. PubMed ID: 26319014 [TBL] [Abstract][Full Text] [Related]
8. Polyadenylation-assisted RNA degradation processes in plants. Lange H; Sement FM; Canaday J; Gagliardi D Trends Plant Sci; 2009 Sep; 14(9):497-504. PubMed ID: 19716749 [TBL] [Abstract][Full Text] [Related]
9. Maturation of selected human mitochondrial tRNAs requires deadenylation. Pearce SF; Rorbach J; Van Haute L; D'Souza AR; Rebelo-Guiomar P; Powell CA; Brierley I; Firth AE; Minczuk M Elife; 2017 Jul; 6():. PubMed ID: 28745585 [TBL] [Abstract][Full Text] [Related]
10. Stable PNPase RNAi silencing: its effect on the processing and adenylation of human mitochondrial RNA. Slomovic S; Schuster G RNA; 2008 Feb; 14(2):310-23. PubMed ID: 18083837 [TBL] [Abstract][Full Text] [Related]
11. Polyadenylation in mammalian mitochondria: insights from recent studies. Nagaike T; Suzuki T; Ueda T Biochim Biophys Acta; 2008 Apr; 1779(4):266-9. PubMed ID: 18312863 [TBL] [Abstract][Full Text] [Related]
12. 3' adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. Etheridge RD; Aphasizheva I; Gershon PD; Aphasizhev R EMBO J; 2008 Jun; 27(11):1596-608. PubMed ID: 18464794 [TBL] [Abstract][Full Text] [Related]
13. A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression. Wilson WC; Hornig-Do HT; Bruni F; Chang JH; Jourdain AA; Martinou JC; Falkenberg M; Spåhr H; Larsson NG; Lewis RJ; Hewitt L; Baslé A; Cross HE; Tong L; Lebel RR; Crosby AH; Chrzanowska-Lightowlers ZM; Lightowlers RN Hum Mol Genet; 2014 Dec; 23(23):6345-55. PubMed ID: 25008111 [TBL] [Abstract][Full Text] [Related]
15. Transcription of mammalian messenger RNAs by a nuclear RNA polymerase of mitochondrial origin. Kravchenko JE; Rogozin IB; Koonin EV; Chumakov PM Nature; 2005 Aug; 436(7051):735-9. PubMed ID: 16079853 [TBL] [Abstract][Full Text] [Related]
16. Defects of mitochondrial RNA turnover lead to the accumulation of double-stranded RNA in vivo. Pajak A; Laine I; Clemente P; El-Fissi N; Schober FA; Maffezzini C; Calvo-Garrido J; Wibom R; Filograna R; Dhir A; Wedell A; Freyer C; Wredenberg A PLoS Genet; 2019 Jul; 15(7):e1008240. PubMed ID: 31365523 [TBL] [Abstract][Full Text] [Related]
17. Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. Temperley RJ; Seneca SH; Tonska K; Bartnik E; Bindoff LA; Lightowlers RN; Chrzanowska-Lightowlers ZM Hum Mol Genet; 2003 Sep; 12(18):2341-8. PubMed ID: 12915481 [TBL] [Abstract][Full Text] [Related]
18. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Zhang Q; He X; Yao S; Lin T; Zhang L; Chen D; Chen C; Yang Q; Li F; Zhu YM; Guan MX Nucleic Acids Res; 2021 May; 49(8):4689-4704. PubMed ID: 33836087 [TBL] [Abstract][Full Text] [Related]
19. Polyadenylation and degradation of RNA in the mitochondria. Levy S; Schuster G Biochem Soc Trans; 2016 Oct; 44(5):1475-1482. PubMed ID: 27911729 [TBL] [Abstract][Full Text] [Related]
20. Targeting of the cytosolic poly(A) binding protein PABPC1 to mitochondria causes mitochondrial translation inhibition. Wydro M; Bobrowicz A; Temperley RJ; Lightowlers RN; Chrzanowska-Lightowlers ZM Nucleic Acids Res; 2010 Jun; 38(11):3732-42. PubMed ID: 20144953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]