BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22173277)

  • 1. Ultrastructure of the innermost surface of differentiating normal and compression wood tracheids as revealed by field emission scanning electron microscopy.
    Kim JS; Awano T; Yoshinaga A; Takabe K
    Planta; 2012 Jun; 235(6):1209-19. PubMed ID: 22173277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of xylan and mannan polysaccharides and their spatial relationship with other cell wall components in differentiating compression wood tracheids of Cryptomeria japonica.
    Kim JS; Awano T; Yoshinaga A; Takabe K
    Planta; 2011 Apr; 233(4):721-35. PubMed ID: 21184094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunolocalization of beta-1-4-galactan and its relationship with lignin distribution in developing compression wood of Cryptomeria japonica.
    Kim JS; Awano T; Yoshinaga A; Takabe K
    Planta; 2010 Jun; 232(1):109-19. PubMed ID: 20376677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diurnal differences in the supply of glucomannans and xylans to innermost surface of cell walls at various developmental stages from cambium to mature xylem in Cryptomeria japonica.
    Hosoo Y; Imai T; Yoshida M
    Protoplasma; 2006 Nov; 229(1):11-9. PubMed ID: 17102930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism.
    Li X; Yang X; Wu HX
    BMC Genomics; 2013 Nov; 14(1):768. PubMed ID: 24209714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydraulic and anatomical properties of light bands in Norway spruce compression wood.
    Mayr S; Bardage S; Brändström J
    Tree Physiol; 2006 Jan; 26(1):17-23. PubMed ID: 16203710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal and clonal variation in cellulose microfibril orientation during cell wall formation of tracheids in Cryptomeria japonica.
    Jyske T; Fujiwara T; Kuroda K; Iki T; Zhang C; Jyske TK; Abe H
    Tree Physiol; 2014 Aug; 34(8):856-68. PubMed ID: 24633653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae).
    Nagai S; Utsumi Y
    Am J Bot; 2012 Sep; 99(9):1553-61. PubMed ID: 22917949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems.
    Begum S; Nakaba S; Yamagishi Y; Yamane K; Islam MA; Oribe Y; Ko JH; Jin HO; Funada R
    Ann Bot; 2012 Sep; 110(4):875-85. PubMed ID: 22843340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica.
    Kitin P; Fujii T; Abe H; Takata K
    Ann Bot; 2009 May; 103(7):1145-57. PubMed ID: 19258338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xylan deposition on secondary wall of Fagus crenata fiber.
    Awano T; Takabe K; Fujita M
    Protoplasma; 2002 Feb; 219(1-2):106-15. PubMed ID: 11926061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunolocalization and structural variations of xylan in differentiating earlywood tracheid cell walls of Cryptomeria japonica.
    Kim JS; Awano T; Yoshinaga A; Takabe K
    Planta; 2010 Sep; 232(4):817-24. PubMed ID: 20628757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal and spatial diversities of the immunolabeling of mannan and xylan polysaccharides in differentiating earlywood ray cells and pits of Cryptomeria japonica.
    Kim JS; Awano T; Yoshinaga A; Takabe K
    Planta; 2011 Jan; 233(1):109-22. PubMed ID: 20931224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimensional Changes of Tracheids during Drying of Radiata Pine (Pinus radiata D. Don) Compression Woods: A Study Using Variable-Pressure Scanning Electron Microscopy (VP-SEM).
    Zhang M; Smith BG; McArdle BH; Chavan RR; James BJ; Harris PJ
    Plants (Basel); 2018 Feb; 7(1):. PubMed ID: 29495536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of (1->4)-beta-galactans, arabinogalactan proteins, xylans and (1->3)-beta-glucans in tracheid cell walls of softwoods.
    Altaner CM; Tokareva EN; Jarvis MC; Harris PJ
    Tree Physiol; 2010 Jun; 30(6):782-93. PubMed ID: 20382964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of cell wall polysaccharides in normal and compression wood of radiata pine: relationships with lignification and microfibril orientation.
    Donaldson LA; Knox JP
    Plant Physiol; 2012 Feb; 158(2):642-53. PubMed ID: 22147521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy.
    Peng H; Salmén L; Stevanic JS; Lu J
    Planta; 2019 Jul; 250(1):163-171. PubMed ID: 30953149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ionic liquid treatment on the ultrastructural and topochemical features of compression wood in Japanese cedar (Cryptomeria japonica).
    Kanbayashi T; Miyafuji H
    Sci Rep; 2016 Jul; 6():30147. PubMed ID: 27426470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids.
    Hosoo Y; Yoshida M; Imai T; Okuyama T
    Planta; 2002 Oct; 215(6):1006-12. PubMed ID: 12355161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ visualizing selective lignin dissolution of tracheids wall in reaction wood.
    Dai L; Wang J; Liu XE; Ma Q; Fei B; Ma J; Jin Z
    Int J Biol Macromol; 2022 Dec; 222(Pt A):691-700. PubMed ID: 36174859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.