These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 22173420)

  • 21. Biomass characterization of laboratory-scale thermophilic-mesophilic wastewater treatment processes.
    Suvilampi J; Lehtomäki A; Rintala J
    Environ Technol; 2006 Jan; 27(1):41-51. PubMed ID: 16457174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activated sludge deflocculation under temperature upshifts from 30 to 45 degrees C.
    Morgan-Sagastume F; Grant Allen D
    Water Res; 2005 Mar; 39(6):1061-74. PubMed ID: 15766960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc.
    Basuvaraj M; Fein J; Liss SN
    Water Res; 2015 Oct; 82():104-17. PubMed ID: 25997747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of fractal dimensions to study the structure of flocs formed in lime softening process.
    Vahedi A; Gorczyca B
    Water Res; 2011 Jan; 45(2):545-56. PubMed ID: 20937512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of SRT and temperature on biological conversions and the related scum-forming potential.
    Halalsheh M; Koppes J; den Elzen J; Zeeman G; Fayyad M; Lettinga G
    Water Res; 2005 Jul; 39(12):2475-82. PubMed ID: 15978650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation.
    Ghangrekar MM; Asolekar SR; Joshi SG
    Water Res; 2005 Mar; 39(6):1123-33. PubMed ID: 15766967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro-profiles of activated sludge floc determined using microelectrodes.
    Li B; Bishop PL
    Water Res; 2004 Mar; 38(5):1248-58. PubMed ID: 14975658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review of floc strength and breakage.
    Jarvis P; Jefferson B; Gregory J; Parsons SA
    Water Res; 2005 Sep; 39(14):3121-37. PubMed ID: 16000210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between flocculation of activated sludge and composition of extracellular polymeric substances.
    Wilén BM; Jin B; Lant P
    Water Sci Technol; 2003; 47(12):95-103. PubMed ID: 12926675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The performance of a phase separated granular bed bioreactor treating brewery wastewater.
    Baloch MI; Akunna JC; Collier PJ
    Bioresour Technol; 2007 Jul; 98(9):1849-55. PubMed ID: 16949280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of image analysis and rheological studies for the control of settleability of filamentous bacteria: application in SBR reactor.
    Dagot C; Pons MN; Casellas M; Guibaud G; Dollet P; Baudu M
    Water Sci Technol; 2001; 43(3):27-33. PubMed ID: 11381916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristic analysis on temporal evolution of floc size and structure in low-shear flow.
    He W; Nan J; Li H; Li S
    Water Res; 2012 Feb; 46(2):509-20. PubMed ID: 22137291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge.
    Li XY; Yang SF
    Water Res; 2007 Mar; 41(5):1022-30. PubMed ID: 16952388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater.
    López-Palau S; Dosta J; Mata-Alvarez J
    Water Sci Technol; 2009; 60(4):1049-54. PubMed ID: 19700844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing aerobic granulation for biological nutrient removal from domestic wastewater.
    Coma M; Verawaty M; Pijuan M; Yuan Z; Bond PL
    Bioresour Technol; 2012 Jan; 103(1):101-8. PubMed ID: 22050837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-rate wastewater treatment combining a moving bed biofilm reactor and enhanced particle separation.
    Helness H; Melin E; Ulgenes Y; Järvinen P; Rasmussen V; Odegaard H
    Water Sci Technol; 2005; 52(10-11):117-27. PubMed ID: 16459783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Membrane bioreactor operation at short solids retention times: performance and biomass characteristics.
    Ng HY; Hermanowicz SW
    Water Res; 2005 Mar; 39(6):981-92. PubMed ID: 15766953
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge.
    Cassidy DP; Belia E
    Water Res; 2005 Nov; 39(19):4817-23. PubMed ID: 16278003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-function dynamics and modeling analysis of the micro-environment of activated sludge floc.
    Li B; Bishop P
    Water Sci Technol; 2003; 47(11):267-73. PubMed ID: 12906299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composition of activated sludge settling and planktonic bacterial communities treating industrial effluent and their correlation to settling problems.
    Nadarajah N; Allen DG; Fulthorpe RR
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1205-14. PubMed ID: 20737270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.