These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 22173836)

  • 1. Preparation and characterization of hybrid conducting polymer-carbon nanotube yarn.
    Foroughi J; Spinks GM; Ghorbani SR; Kozlov ME; Safaei F; Peleckis G; Wallace GG; Baughman RH
    Nanoscale; 2012 Feb; 4(3):940-5. PubMed ID: 22173836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and process-dependent properties of solid-state spun carbon nanotube yarns.
    Fang S; Zhang M; Zakhidov AA; Baughman RH
    J Phys Condens Matter; 2010 Aug; 22(33):334221. PubMed ID: 21386511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.
    Liu K; Sun Y; Lin X; Zhou R; Wang J; Fan S; Jiang K
    ACS Nano; 2010 Oct; 4(10):5827-34. PubMed ID: 20831235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of Solid Composite Yarns from Carbon Nanotubes and Poly(dicyclopentadiene).
    Xin W; Severino J; Venkert A; Yu H; Knorr D; Yang JM; Carlson L; Hicks R; De Rosa I
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Top-down process based on electrospinning, twisting, and heating for producing one-dimensional carbon nanotube assembly.
    Imaizumi S; Matsumoto H; Konosu Y; Tsuboi K; Minagawa M; Tanioka A; Koziol K; Windle A
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):469-75. PubMed ID: 21268647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.
    Lee JA; Shin MK; Kim SH; Kim SJ; Spinks GM; Wallace GG; Ovalle-Robles R; Lima MD; Kozlov ME; Baughman RH
    ACS Nano; 2012 Jan; 6(1):327-34. PubMed ID: 22168757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional carbon nanotube yarns by downsizing an ancient technology.
    Zhang M; Atkinson KR; Baughman RH
    Science; 2004 Nov; 306(5700):1358-61. PubMed ID: 15550667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell morphology and characterization of carbon nanotube nanowires click coupled with polypyrrole.
    Rana S; Cho JW
    Nanotechnology; 2011 Jul; 22(27):275609. PubMed ID: 21613687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.
    Liu K; Sun Y; Zhou R; Zhu H; Wang J; Liu L; Fan S; Jiang K
    Nanotechnology; 2010 Jan; 21(4):045708. PubMed ID: 20009208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale study of high performance double-walled nanotube-polymer fibers.
    Naraghi M; Filleter T; Moravsky A; Locascio M; Loutfy RO; Espinosa HD
    ACS Nano; 2010 Nov; 4(11):6463-76. PubMed ID: 20977259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic conductivity transition of carbon nanotube yarns coated with silver particles.
    Zhang D; Zhang Y; Miao M
    Nanotechnology; 2014 Jul; 25(27):275702. PubMed ID: 24960558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-robust, lightweight, conducting carbon nanotube blocks cross-linked by de-fluorination.
    Sato Y; Ootsubo M; Yamamoto G; Van Lier G; Terrones M; Hashiguchi S; Kimura H; Okubo A; Motomiya K; Jeyadevan B; Hashida T; Tohji K
    ACS Nano; 2008 Feb; 2(2):348-56. PubMed ID: 19206637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation.
    Miller SG; Williams TS; Baker JS; Solá F; Lebron-Colon M; McCorkle LS; Wilmoth NG; Gaier J; Chen M; Meador MA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6120-6. PubMed ID: 24720450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties.
    Zhang X; Lü Z; Wen M; Liang H; Zhang J; Liu Z
    J Phys Chem B; 2005 Jan; 109(3):1101-7. PubMed ID: 16851066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic liquid integrated multiwalled carbon nanotube in a poly(vinylidene fluoride) matrix: formation of a piezoelectric β-polymorph with significant reinforcement and conductivity improvement.
    Mandal A; Nandi AK
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):747-60. PubMed ID: 23281687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin carbon nanotube fibrils of high electrochemical capacitance.
    Ma J; Tang J; Zhang H; Shinya N; Qin LC
    ACS Nano; 2009 Nov; 3(11):3679-83. PubMed ID: 19877714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacturing polymer/carbon nanotube composite using a novel direct process.
    Tran CD; Lucas S; Phillips DG; Randeniya LK; Baughman RH; Tran-Cong T
    Nanotechnology; 2011 Apr; 22(14):145302. PubMed ID: 21346301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of a Branchlike MoO(3)/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors.
    Zhang X; Zeng X; Yang M; Qi Y
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1125-30. PubMed ID: 24367933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.