These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22173939)

  • 41. The influence of microhydration on the ionization energy thresholds of uracil and thymine.
    Close DM; Crespo-Hernández CE; Gorb L; Leszczynski J
    J Phys Chem A; 2005 Oct; 109(41):9279-83. PubMed ID: 16833269
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution.
    Gutowski KE; Dixon DA
    J Phys Chem A; 2006 Jul; 110(28):8840-56. PubMed ID: 16836448
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theoretical Calculation of pK
    Thapa B; Schlegel HB
    J Phys Chem A; 2016 Nov; 120(44):8916-8922. PubMed ID: 27748600
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calculations of pKa of superacids in 1,2-dichloroethane.
    Trummal A; Rummel A; Lippmaa E; Koppel I; Koppel IA
    J Phys Chem A; 2011 Jun; 115(24):6641-5. PubMed ID: 21612234
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem A; 2006 Feb; 110(7):2493-9. PubMed ID: 16480309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methods To Improve the Calculations of Solvation Model Density Solvation Free Energies and Associated Aqueous p
    Xu L; Coote ML
    J Phys Chem A; 2019 Aug; 123(34):7430-7438. PubMed ID: 31382743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuum solvation models in the linear interaction energy method.
    Carlsson J; Andér M; Nervall M; Aqvist J
    J Phys Chem B; 2006 Jun; 110(24):12034-41. PubMed ID: 16800513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical study of chlorophyll a hydrates formation in aqueous organic solvents.
    Ben Fredj A; Ruiz-López MF
    J Phys Chem B; 2010 Jan; 114(1):681-7. PubMed ID: 20020703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the mechanisms of oxidation of organic sulfides by H2O2 in aqueous solutions.
    Chu JW; Trout BL
    J Am Chem Soc; 2004 Jan; 126(3):900-8. PubMed ID: 14733566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accurate pK(a) calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods.
    Liptak MD; Shields GC
    J Am Chem Soc; 2001 Aug; 123(30):7314-9. PubMed ID: 11472159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequential hydration of small protonated peptides.
    Liu D; Wyttenbach T; Barran PE; Bowers MT
    J Am Chem Soc; 2003 Jul; 125(28):8458-64. PubMed ID: 12848551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermochemical properties of HxNO molecules and ions from ab initio electronic structure theory.
    Dixon DA; Francisco JS; Alexeev Y
    J Phys Chem A; 2006 Jan; 110(1):185-91. PubMed ID: 16392854
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of explicit hydration waters in calculating the hydrolysis constants for geochemically relevant metals.
    Wander MC; Rustad JR; Casey WH
    J Phys Chem A; 2010 Feb; 114(4):1917-25. PubMed ID: 20055499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A DFT study of solvation effects on the tautomeric equilibrium and catalytic ylide generation of thiamin models.
    Alstrup Lie M; Schiøtt B
    J Comput Chem; 2008 May; 29(7):1037-47. PubMed ID: 18058864
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theoretical prediction of relative and absolute pKa values of aminopyridines.
    Caballero NA; Melendez FJ; Muñoz-Caro C; Niño A
    Biophys Chem; 2006 Nov; 124(2):155-60. PubMed ID: 16844281
    [TBL] [Abstract][Full Text] [Related]  

  • 58. I-SOLV: a new surface-based empirical model for computing solvation free energies.
    Wang R; Lin F; Xu Y; Cheng T
    J Mol Graph Model; 2007 Jul; 26(1):368-77. PubMed ID: 17317248
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Accurate prediction of absolute acidity constants in water with a polarizable force field: substituted phenols, methanol, and imidazole.
    Kaminski GA
    J Phys Chem B; 2005 Mar; 109(12):5884-90. PubMed ID: 16851640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Revised self-consistent continuum solvation in electronic-structure calculations.
    Andreussi O; Dabo I; Marzari N
    J Chem Phys; 2012 Feb; 136(6):064102. PubMed ID: 22360164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.