These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Zhang J; Gao J; Church CP; Miller EM; Luther JM; Klimov VI; Beard MC Nano Lett; 2014 Oct; 14(10):6010-5. PubMed ID: 25203870 [TBL] [Abstract][Full Text] [Related]
8. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Robel I; Subramanian V; Kuno M; Kamat PV J Am Chem Soc; 2006 Feb; 128(7):2385-93. PubMed ID: 16478194 [TBL] [Abstract][Full Text] [Related]
9. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Kamat PV Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938 [TBL] [Abstract][Full Text] [Related]
10. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Beard MC; Midgett AG; Hanna MC; Luther JM; Hughes BK; Nozik AJ Nano Lett; 2010 Aug; 10(8):3019-27. PubMed ID: 20698615 [TBL] [Abstract][Full Text] [Related]
11. The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots. Jaeger HM; Fischer S; Prezhdo OV J Chem Phys; 2012 Feb; 136(6):064701. PubMed ID: 22360209 [TBL] [Abstract][Full Text] [Related]
12. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals. Zhu H; Yang Y; Lian T Acc Chem Res; 2013 Jun; 46(6):1270-9. PubMed ID: 23148478 [TBL] [Abstract][Full Text] [Related]
13. Ultimate Charge Extraction of Monolayer PbS Quantum Dot for Observation of Multiple Exciton Generation. Park SY; Han S; Kim Y; Jung S; Kim DH; Han GS; Jung HS Chemphyschem; 2019 Oct; 20(20):2657-2661. PubMed ID: 31410971 [TBL] [Abstract][Full Text] [Related]
14. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Kim J; Wong CY; Scholes GD Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542 [TBL] [Abstract][Full Text] [Related]
16. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Nozik AJ Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control. Li W; Roelofs WS; Wienk MM; Janssen RA J Am Chem Soc; 2012 Aug; 134(33):13787-95. PubMed ID: 22812425 [TBL] [Abstract][Full Text] [Related]
18. Dye-Sensitized Multiple Exciton Generation in Lead Sulfide Quantum Dots. Huang Z; Beard MC J Am Chem Soc; 2022 Aug; 144(34):15855-15861. PubMed ID: 35981268 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous enhanced photon capture and carrier generation in Si solar cells using Ge quantum dot photonic nanocrystals. Usami N; Pan W; Tayagaki T; Chu ST; Li J; Feng T; Hoshi Y; Kiguchi T Nanotechnology; 2012 May; 23(18):185401. PubMed ID: 22498920 [TBL] [Abstract][Full Text] [Related]
20. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]