BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 22174246)

  • 1. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell.
    Semonin OE; Luther JM; Choi S; Chen HY; Gao J; Nozik AJ; Beard MC
    Science; 2011 Dec; 334(6062):1530-3. PubMed ID: 22174246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Exciton Generation in Semiconductor Quantum Dots.
    Beard MC
    J Phys Chem Lett; 2011 Jun; 2(11):1282-8. PubMed ID: 26295422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photovoltaic performance of ultrasmall PbSe quantum dots.
    Ma W; Swisher SL; Ewers T; Engel J; Ferry VE; Atwater HA; Alivisatos AP
    ACS Nano; 2011 Oct; 5(10):8140-7. PubMed ID: 21939281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%.
    Böhm ML; Jellicoe TC; Tabachnyk M; Davis NJ; Wisnivesky-Rocca-Rivarola F; Ducati C; Ehrler B; Bakulin AA; Greenham NC
    Nano Lett; 2015 Dec; 15(12):7987-93. PubMed ID: 26488847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere.
    Zhang J; Gao J; Church CP; Miller EM; Luther JM; Klimov VI; Beard MC
    Nano Lett; 2014 Oct; 14(10):6010-5. PubMed ID: 25203870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.
    Robel I; Subramanian V; Kuno M; Kamat PV
    J Am Chem Soc; 2006 Feb; 128(7):2385-93. PubMed ID: 16478194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion.
    Beard MC; Midgett AG; Hanna MC; Luther JM; Hughes BK; Nozik AJ
    Nano Lett; 2010 Aug; 10(8):3019-27. PubMed ID: 20698615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots.
    Jaeger HM; Fischer S; Prezhdo OV
    J Chem Phys; 2012 Feb; 136(6):064701. PubMed ID: 22360209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals.
    Zhu H; Yang Y; Lian T
    Acc Chem Res; 2013 Jun; 46(6):1270-9. PubMed ID: 23148478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultimate Charge Extraction of Monolayer PbS Quantum Dot for Observation of Multiple Exciton Generation.
    Park SY; Han S; Kim Y; Jung S; Kim DH; Han GS; Jung HS
    Chemphyschem; 2019 Oct; 20(20):2657-2661. PubMed ID: 31410971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombination in quantum dot sensitized solar cells.
    Mora-Seró I; Giménez S; Fabregat-Santiago F; Gómez R; Shen Q; Toyoda T; Bisquert J
    Acc Chem Res; 2009 Nov; 42(11):1848-57. PubMed ID: 19722527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion.
    Nozik AJ
    Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control.
    Li W; Roelofs WS; Wienk MM; Janssen RA
    J Am Chem Soc; 2012 Aug; 134(33):13787-95. PubMed ID: 22812425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dye-Sensitized Multiple Exciton Generation in Lead Sulfide Quantum Dots.
    Huang Z; Beard MC
    J Am Chem Soc; 2022 Aug; 144(34):15855-15861. PubMed ID: 35981268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous enhanced photon capture and carrier generation in Si solar cells using Ge quantum dot photonic nanocrystals.
    Usami N; Pan W; Tayagaki T; Chu ST; Li J; Feng T; Hoshi Y; Kiguchi T
    Nanotechnology; 2012 May; 23(18):185401. PubMed ID: 22498920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.
    Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC
    ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.