These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 22174246)

  • 21. Colloidal quantum-dot photodetectors exploiting multiexciton generation.
    Sukhovatkin V; Hinds S; Brzozowski L; Sargent EH
    Science; 2009 Jun; 324(5934):1542-4. PubMed ID: 19541992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.
    Chen J; Lei W; Deng WQ
    Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hot-electron transfer from semiconductor nanocrystals.
    Tisdale WA; Williams KJ; Timp BA; Norris DJ; Aydil ES; Zhu XY
    Science; 2010 Jun; 328(5985):1543-7. PubMed ID: 20558714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hot exciton cooling and multiple exciton generation in PbSe quantum dots.
    Kumar M; Vezzoli S; Wang Z; Chaudhary V; Ramanujan RV; Gurzadyan GG; Bruno A; Soci C
    Phys Chem Chem Phys; 2016 Nov; 18(45):31107-31114. PubMed ID: 27812574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple exciton generation in nanocrystal quantum dots--controversy, current status and future prospects.
    Binks DJ
    Phys Chem Chem Phys; 2011 Jul; 13(28):12693-704. PubMed ID: 21603696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.
    Yun HJ; Paik T; Diroll B; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14692-700. PubMed ID: 27224958
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue.
    Huang J; Huang Z; Yang Y; Zhu H; Lian T
    J Am Chem Soc; 2010 Apr; 132(13):4858-64. PubMed ID: 20218563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbS(x)Se(1-x) alloyed quantum dots.
    Midgett AG; Luther JM; Stewart JT; Smith DK; Padilha LA; Klimov VI; Nozik AJ; Beard MC
    Nano Lett; 2013 Jul; 13(7):3078-85. PubMed ID: 23750998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A New Passivation Route Leading to Over 8% Efficient PbSe Quantum-Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals.
    Zhang Z; Chen Z; Yuan L; Chen W; Yang J; Wang B; Wen X; Zhang J; Hu L; Stride JA; Conibeer GJ; Patterson RJ; Huang S
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple exciton generation and dissociation in PbS quantum dot-electron acceptor complexes.
    Yang Y; Rodríguez-Córdoba W; Lian T
    Nano Lett; 2012 Aug; 12(8):4235-41. PubMed ID: 22757981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. False multiple exciton recombination and multiple exciton generation signals in semiconductor quantum dots arise from surface charge trapping.
    Tyagi P; Kambhampati P
    J Chem Phys; 2011 Mar; 134(9):094706. PubMed ID: 21384996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.
    Davis NJ; Böhm ML; Tabachnyk M; Wisnivesky-Rocca-Rivarola F; Jellicoe TC; Ducati C; Ehrler B; Greenham NC
    Nat Commun; 2015 Sep; 6():8259. PubMed ID: 26411283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Air-Stable and Efficient PbSe Quantum-Dot Solar Cells Based upon ZnSe to PbSe Cation-Exchanged Quantum Dots.
    Kim S; Marshall AR; Kroupa DM; Miller EM; Luther JM; Jeong S; Beard MC
    ACS Nano; 2015 Aug; 9(8):8157-64. PubMed ID: 26222812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charging of quantum dots by sulfide redox electrolytes reduces electron injection efficiency in quantum dot sensitized solar cells.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2013 Aug; 135(31):11461-4. PubMed ID: 23865741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence.
    Schaller RD; Sykora M; Jeong S; Klimov VI
    J Phys Chem B; 2006 Dec; 110(50):25332-8. PubMed ID: 17165979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directionally selective light trapping in a germanium solar cell.
    Peters M; Ulbrich C; Goldschmidt JC; Fernandez J; Siefer G; Bläsi B
    Opt Express; 2011 Mar; 19 Suppl 2():A136-45. PubMed ID: 21445215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications.
    Asil D; Haciefendioğlu T
    Turk J Chem; 2021; 45(3):905-913. PubMed ID: 34385875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.