BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 22174254)

  • 41. RIM genes differentially contribute to organizing presynaptic release sites.
    Kaeser PS; Deng L; Fan M; Südhof TC
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11830-5. PubMed ID: 22753485
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses.
    Grauel MK; Maglione M; Reddy-Alla S; Willmes CG; Brockmann MM; Trimbuch T; Rosenmund T; Pangalos M; Vardar G; Stumpf A; Walter AM; Rost BR; Eickholt BJ; Haucke V; Schmitz D; Sigrist SJ; Rosenmund C
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11615-11620. PubMed ID: 27671655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neurotransmitter Release Site Replenishment and Presynaptic Plasticity.
    Mochida S
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33396919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery.
    Spafford JD; Zamponi GW
    Curr Opin Neurobiol; 2003 Jun; 13(3):308-14. PubMed ID: 12850215
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone.
    Schoch S; Castillo PE; Jo T; Mukherjee K; Geppert M; Wang Y; Schmitz F; Malenka RC; Südhof TC
    Nature; 2002 Jan; 415(6869):321-6. PubMed ID: 11797009
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Active forgetting requires Sickie function in a dedicated dopamine circuit in
    Zhang X; Sabandal JM; Tsaprailis G; Davis RL
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2204229119. PubMed ID: 36095217
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The human cognition-enhancing CORD7 mutation increases active zone number and synaptic release.
    Paul MM; Dannhäuser S; Morris L; Mrestani A; Hübsch M; Gehring J; Hatzopoulos GN; Pauli M; Auger GM; Bornschein G; Scholz N; Ljaschenko D; Müller M; Sauer M; Schmidt H; Kittel RJ; DiAntonio A; Vakonakis I; Heckmann M; Langenhan T
    Brain; 2022 Nov; 145(11):3787-3802. PubMed ID: 35022694
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular Remodeling of the Presynaptic Active Zone of Drosophila Photoreceptors via Activity-Dependent Feedback.
    Sugie A; Hakeda-Suzuki S; Suzuki E; Silies M; Shimozono M; Möhl C; Suzuki T; Tavosanis G
    Neuron; 2015 May; 86(3):711-25. PubMed ID: 25892303
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Receptor clustering: nothing succeeds like success.
    Griffith LC
    Curr Biol; 2004 Jun; 14(11):R413-5. PubMed ID: 15182686
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Calcium Channel C-Terminal and Synaptic Vesicle Tethering: Analysis by Immuno-Nanogold Localization.
    Chen RHC; Li Q; Snidal CA; Gardezi SR; Stanley EF
    Front Cell Neurosci; 2017; 11():85. PubMed ID: 28424589
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone.
    Körber C; Kuner T
    Front Synaptic Neurosci; 2016; 8():5. PubMed ID: 26973506
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coupling the Structural and Functional Assembly of Synaptic Release Sites.
    Ghelani T; Sigrist SJ
    Front Neuroanat; 2018; 12():81. PubMed ID: 30386217
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Maturation of active zone assembly by Drosophila Bruchpilot.
    Fouquet W; Owald D; Wichmann C; Mertel S; Depner H; Dyba M; Hallermann S; Kittel RJ; Eimer S; Sigrist SJ
    J Cell Biol; 2009 Jul; 186(1):129-45. PubMed ID: 19596851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Naked dense bodies provoke depression.
    Hallermann S; Kittel RJ; Wichmann C; Weyhersmüller A; Fouquet W; Mertel S; Owald D; Eimer S; Depner H; Schwärzel M; Sigrist SJ; Heckmann M
    J Neurosci; 2010 Oct; 30(43):14340-5. PubMed ID: 20980589
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Active zone localization of presynaptic calcium channels encoded by the cacophony locus of Drosophila.
    Kawasaki F; Zou B; Xu X; Ordway RW
    J Neurosci; 2004 Jan; 24(1):282-5. PubMed ID: 14715960
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interactive nanocluster compaction of the ELKS scaffold and Cacophony Ca
    Ghelani T; Escher M; Thomas U; Esch K; Lützkendorf J; Depner H; Maglione M; Parutto P; Gratz S; Matkovic-Rachid T; Ryglewski S; Walter AM; Holcman D; O'Connor Giles K; Heine M; Sigrist SJ
    Sci Adv; 2023 Feb; 9(7):eade7804. PubMed ID: 36800417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Homeostatic scaling of active zone scaffolds maintains global synaptic strength.
    Goel P; Dufour Bergeron D; Böhme MA; Nunnelly L; Lehmann M; Buser C; Walter AM; Sigrist SJ; Dickman D
    J Cell Biol; 2019 May; 218(5):1706-1724. PubMed ID: 30914419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel alpha1 subunit.
    Ly CV; Yao CK; Verstreken P; Ohyama T; Bellen HJ
    J Cell Biol; 2008 Apr; 181(1):157-70. PubMed ID: 18391075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GABA
    Koppensteiner P; Bhandari P; Önal C; Borges-Merjane C; Le Monnier E; Roy U; Nakamura Y; Sadakata T; Sanbo M; Hirabayashi M; Rhee J; Brose N; Jonas P; Shigemoto R
    Proc Natl Acad Sci U S A; 2024 Feb; 121(8):e2301449121. PubMed ID: 38346189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional interactions between voltage-gated Ca(2+) channels and Rab3-interacting molecules (RIMs): new insights into stimulus-secretion coupling.
    Gandini MA; Felix R
    Biochim Biophys Acta; 2012 Mar; 1818(3):551-8. PubMed ID: 22198390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.