These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 22174254)

  • 61. Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function.
    Glebov OO; Jackson RE; Winterflood CM; Owen DM; Barker EA; Doherty P; Ewers H; Burrone J
    Cell Rep; 2017 Mar; 18(11):2715-2728. PubMed ID: 28297674
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nanoscaled RIM clustering at presynaptic active zones revealed by endogenous tagging.
    Mrestani A; Dannhäuser S; Pauli M; Kollmannsberger P; Hübsch M; Morris L; Langenhan T; Heckmann M; Paul MM
    Life Sci Alliance; 2023 Dec; 6(12):. PubMed ID: 37696575
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Autophagy in the presynaptic compartment.
    Lüningschrör P; Sendtner M
    Curr Opin Neurobiol; 2018 Aug; 51():80-85. PubMed ID: 29549710
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites.
    Liu C; Kershberg L; Wang J; Schneeberger S; Kaeser PS
    Cell; 2018 Feb; 172(4):706-718.e15. PubMed ID: 29398114
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spontaneous neurotransmission at evocable synapses predicts their responsiveness to action potentials.
    Grasskamp AT; Jusyte M; McCarthy AW; Götz TWB; Ditlevsen S; Walter AM
    Front Cell Neurosci; 2023; 17():1129417. PubMed ID: 36970416
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Two forms of asynchronous release with distinctive spatiotemporal dynamics in central synapses.
    Malagon G; Myeong J; Klyachko VA
    Elife; 2023 May; 12():. PubMed ID: 37166282
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Negative regulation of active zone assembly by a newly identified SR protein kinase.
    Johnson EL; Fetter RD; Davis GW
    PLoS Biol; 2009 Sep; 7(9):e1000193. PubMed ID: 19771148
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In Vivo Single-Molecule Tracking at the Drosophila Presynaptic Motor Nerve Terminal.
    Bademosi AT; Lauwers E; Amor R; Verstreken P; van Swinderen B; Meunier FA
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364242
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Correlative Live-Cell and Super-Resolution Imaging to Link Presynaptic Molecular Organisation With Function.
    Jackson RE; Compans B; Burrone J
    Front Synaptic Neurosci; 2022; 14():830583. PubMed ID: 35242024
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Liquid Active Zones for Controlling the Phases of Synaptic Transmission.
    Emperador-Melero J; Kaeser PS
    Mol Cell; 2019 Mar; 73(5):859-860. PubMed ID: 30849390
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Differential centrifugation-based biochemical fractionation of the Drosophila adult CNS.
    Depner H; Lützkendorf J; Babkir HA; Sigrist SJ; Holt MG
    Nat Protoc; 2014 Dec; 9(12):2796-808. PubMed ID: 25393777
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Super-resolution microscopy of the synaptic active zone.
    Ehmann N; Sauer M; Kittel RJ
    Front Cell Neurosci; 2015; 9():7. PubMed ID: 25688186
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Signalling mechanisms.
    Ascher P; Stevens CF
    Curr Opin Neurobiol; 1996 Jun; 6(3):291-3. PubMed ID: 8794091
    [No Abstract]   [Full Text] [Related]  

  • 74. Permeation properties of neurotransmitter transporters.
    Lester HA; Mager S; Quick MW; Corey JL
    Annu Rev Pharmacol Toxicol; 1994; 34():219-49. PubMed ID: 7913802
    [No Abstract]   [Full Text] [Related]  

  • 75. Corrigendum: Correlative Live-Cell and Super-Resolution Imaging to Link Presynaptic Molecular Organisation With Function.
    Jackson RE; Compans B; Burrone J
    Front Synaptic Neurosci; 2022; 14():953045. PubMed ID: 35782788
    [TBL] [Abstract][Full Text] [Related]  

  • 76. RIM-binding protein links synaptic homeostasis to the stabilization and replenishment of high release probability vesicles.
    Müller M; Genç Ö; Davis GW
    Neuron; 2015 Mar; 85(5):1056-69. PubMed ID: 25704950
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The presynaptic active zone.
    Südhof TC
    Neuron; 2012 Jul; 75(1):11-25. PubMed ID: 22794257
    [TBL] [Abstract][Full Text] [Related]  

  • 78. RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool.
    Müller M; Liu KS; Sigrist SJ; Davis GW
    J Neurosci; 2012 Nov; 32(47):16574-85. PubMed ID: 23175813
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle coupling.
    Böhme MA; Beis C; Reddy-Alla S; Reynolds E; Mampell MM; Grasskamp AT; Lützkendorf J; Bergeron DD; Driller JH; Babikir H; Göttfert F; Robinson IM; O'Kane CJ; Hell SW; Wahl MC; Stelzl U; Loll B; Walter AM; Sigrist SJ
    Nat Neurosci; 2016 Oct; 19(10):1311-20. PubMed ID: 27526206
    [TBL] [Abstract][Full Text] [Related]  

  • 80. RIM-BPs Mediate Tight Coupling of Action Potentials to Ca(2+)-Triggered Neurotransmitter Release.
    Acuna C; Liu X; Gonzalez A; Südhof TC
    Neuron; 2015 Sep; 87(6):1234-1247. PubMed ID: 26402606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.