These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 22174258)

  • 1. Combining biological networks to predict genetic interactions.
    Wong SL; Zhang LV; Tong AH; Li Z; Goldberg DS; King OD; Lesage G; Vidal M; Andrews B; Bussey H; Boone C; Roth FP
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15682-7. PubMed ID: 15496468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic lethality and the minimal genome size problem.
    Rahiminejad S; De Sanctis B; Pevzner P; Mushegian A
    mSphere; 2024 Jul; 9(7):e0013924. PubMed ID: 38904396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. dSLAM analysis of genome-wide genetic interactions in Saccharomyces cerevisiae.
    Pan X; Yuan DS; Ooi SL; Wang X; Sookhai-Mahadeo S; Meluh P; Boeke JD
    Methods; 2007 Feb; 41(2):206-21. PubMed ID: 17189863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining protein networks for synthetic genetic interactions.
    Paladugu SR; Zhao S; Ray A; Raval A
    BMC Bioinformatics; 2008 Oct; 9():426. PubMed ID: 18844977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative epistasis analysis and pathway inference from genetic interaction data.
    Phenix H; Morin K; Batenchuk C; Parker J; Abedi V; Yang L; Tepliakova L; Perkins TJ; Kærn M
    PLoS Comput Biol; 2011 May; 7(5):e1002048. PubMed ID: 21589890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of profile similarity measures for genetic interaction networks.
    Deshpande R; Vandersluis B; Myers CL
    PLoS One; 2013; 8(7):e68664. PubMed ID: 23874711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring modulators of genetic interactions with epistatic nested effects models.
    Pirkl M; Diekmann M; van der Wees M; Beerenwinkel N; Fröhlich H; Markowetz F
    PLoS Comput Biol; 2017 Apr; 13(4):e1005496. PubMed ID: 28406896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of fitness and genetic interactions in yeast on a genome scale.
    Baryshnikova A; Costanzo M; Kim Y; Ding H; Koh J; Toufighi K; Youn JY; Ou J; San Luis BJ; Bandyopadhyay S; Hibbs M; Hess D; Gingras AC; Bader GD; Troyanskaya OG; Brown GW; Andrews B; Boone C; Myers CL
    Nat Methods; 2010 Dec; 7(12):1017-24. PubMed ID: 21076421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional compensation for gene loss plays a minor role in maintaining genetic robustness in Saccharomyces cerevisiae.
    Wong SL; Roth FP
    Genetics; 2005 Oct; 171(2):829-33. PubMed ID: 15998714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response.
    Pinoli P; Srihari S; Wong L; Ceri S
    BMC Bioinformatics; 2021 May; 22(1):250. PubMed ID: 33992077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Genetic Interactions Using Machine Learning and Network Properties.
    Madhukar NS; Elemento O; Pandey G
    Front Bioeng Biotechnol; 2015; 3():172. PubMed ID: 26579514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying actionable synthetically lethal cancer gene pairs using mutual exclusivity.
    Wooller SK; Pearl LH; Pearl FMG
    FEBS Lett; 2024 Aug; 598(16):2028-2039. PubMed ID: 38977941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic lethal combinations of low-toxicity drugs for breast cancer identified
    Marhold M; Tomasich E; Schwarz M; Udovica S; Heinzel A; Mayer P; Horak P; Perco P; Krainer M
    Oncotarget; 2018 Nov; 9(91):36379-36391. PubMed ID: 30555636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Approaches to Identify Genetic Interactions for Cancer Therapeutics.
    Benstead-Hume G; Wooller SK; Pearl FMG
    J Integr Bioinform; 2017 Sep; 14(3):. PubMed ID: 28941356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput RNAi screening identifies ID1 as a synthetic sick/lethal gene interacting with the common TP53 mutation R175H.
    Imai H; Kato S; Sakamoto Y; Kakudo Y; Shimodaira H; Ishioka C
    Oncol Rep; 2014 Mar; 31(3):1043-50. PubMed ID: 24378760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying proteins controlling key disease signaling pathways.
    Gitter A; Bar-Joseph Z
    Bioinformatics; 2013 Jul; 29(13):i227-36. PubMed ID: 23812988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SSLPred: predicting synthetic sickness lethality.
    Bandyopadhyay N; Ranka S; Kahveci T
    Pac Symp Biocomput; 2012; ():7-18. PubMed ID: 22174258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Baryshnikova A; Costanzo M; Dixon S; Vizeacoumar FJ; Myers CL; Andrews B; Boone C
    Methods Enzymol; 2010; 470():145-79. PubMed ID: 20946810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Greenblatt J; Emili A
    Methods Mol Biol; 2011; 765():125-53. PubMed ID: 21815091
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.