BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22174281)

  • 1. Artificial functional difference between microbial communities caused by length difference of sequencing reads.
    Zhang Q; Doak TG; Ye Y
    Pac Symp Biocomput; 2012; ():259-70. PubMed ID: 22174281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomics: read length matters.
    Wommack KE; Bhavsar J; Ravel J
    Appl Environ Microbiol; 2008 Mar; 74(5):1453-63. PubMed ID: 18192407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetaDomain: a profile HMM-based protein domain classification tool for short sequences.
    Zhang Y; Sun Y
    Pac Symp Biocomput; 2012; ():271-82. PubMed ID: 22174282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of functional metagenomic annotation and the mappability of short reads.
    Carr R; Borenstein E
    PLoS One; 2014; 9(8):e105776. PubMed ID: 25148512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MetaGeneHunt for protein domain annotation in short-read metagenomes.
    Berlemont R; Winans N; Talamantes D; Dang H; Tsai HW
    Sci Rep; 2020 May; 10(1):7712. PubMed ID: 32382098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A user's guide to quantitative and comparative analysis of metagenomic datasets.
    Luo C; Rodriguez-R LM; Konstantinidis KT
    Methods Enzymol; 2013; 531():525-47. PubMed ID: 24060135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the Quantitative Capabilities of Metagenomic Analysis Software.
    Kerepesi C; Grolmusz V
    Curr Microbiol; 2016 May; 72(5):612-6. PubMed ID: 26831696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatic progress and applications in metaproteogenomics for bridging the gap between genomic sequences and metabolic functions in microbial communities.
    Seifert J; Herbst FA; Halkjaer Nielsen P; Planes FJ; Jehmlich N; Ferrer M; von Bergen M
    Proteomics; 2013 Oct; 13(18-19):2786-804. PubMed ID: 23625762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic correlation of oligonucleotides: a novel genomic signature for metagenome analysis.
    Ding X; Cao CC; Sun X
    J Theor Biol; 2014 Jul; 353():9-18. PubMed ID: 24631045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre- and post-sequencing recommendations for functional annotation of human fecal metagenomes.
    Treiber ML; Taft DH; Korf I; Mills DA; Lemay DG
    BMC Bioinformatics; 2020 Feb; 21(1):74. PubMed ID: 32093654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Agile Functional Analysis of Metagenomic Data Using SUPER-FOCUS.
    Silva GGZ; Lopes FAC; Edwards RA
    Methods Mol Biol; 2017; 1611():35-44. PubMed ID: 28451970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metagenomics: microbial diversity through a scratched lens.
    Temperton B; Giovannoni SJ
    Curr Opin Microbiol; 2012 Oct; 15(5):605-12. PubMed ID: 22831844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-source domain annotation pipeline for quantitative metagenomic and metatranscriptomic functional profiling.
    Ugarte A; Vicedomini R; Bernardes J; Carbone A
    Microbiome; 2018 Aug; 6(1):149. PubMed ID: 30153857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical correction for functional metagenomic profiling of a microbial community with short NGS reads.
    Du R; Fang Z
    J Appl Stat; 2018; 45(14):2521-2535. PubMed ID: 30505061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mastering methodological pitfalls for surviving the metagenomic jungle.
    Delmont TO; Simonet P; Vogel TM
    Bioessays; 2013 Aug; 35(8):744-54. PubMed ID: 23757040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pooled assembly of marine metagenomic datasets: enriching annotation through chimerism.
    Magasin JD; Gerloff DL
    Bioinformatics; 2015 Feb; 31(3):311-7. PubMed ID: 25306399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Specificity Targeted Functional Profiling in Microbial Communities with ShortBRED.
    Kaminski J; Gibson MK; Franzosa EA; Segata N; Dantas G; Huttenhower C
    PLoS Comput Biol; 2015 Dec; 11(12):e1004557. PubMed ID: 26682918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach.
    Durso LM; Harhay GP; Bono JL; Smith TP
    J Microbiol Methods; 2011 Feb; 84(2):278-82. PubMed ID: 21167876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods.
    Mavromatis K; Ivanova N; Barry K; Shapiro H; Goltsman E; McHardy AC; Rigoutsos I; Salamov A; Korzeniewski F; Land M; Lapidus A; Grigoriev I; Richardson P; Hugenholtz P; Kyrpides NC
    Nat Methods; 2007 Jun; 4(6):495-500. PubMed ID: 17468765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products.
    Almeida M; Hébert A; Abraham AL; Rasmussen S; Monnet C; Pons N; Delbès C; Loux V; Batto JM; Leonard P; Kennedy S; Ehrlich SD; Pop M; Montel MC; Irlinger F; Renault P
    BMC Genomics; 2014 Dec; 15(1):1101. PubMed ID: 25496341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.