BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 22174400)

  • 1. Brachial artery modifications to blood flow-restricted handgrip training and detraining.
    Hunt JE; Walton LA; Ferguson RA
    J Appl Physiol (1985); 2012 Mar; 112(6):956-61. PubMed ID: 22174400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of regional vascular adaptations to low load resistance training with blood flow restriction.
    Hunt JE; Galea D; Tufft G; Bunce D; Ferguson RA
    J Appl Physiol (1985); 2013 Aug; 115(3):403-11. PubMed ID: 23703116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of handgrip training with venous restriction on brachial artery vasodilation.
    Credeur DP; Hollis BC; Welsch MA
    Med Sci Sports Exerc; 2010 Jul; 42(7):1296-302. PubMed ID: 20019641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposing effects of shear-mediated dilation and myogenic constriction on artery diameter in response to handgrip exercise in humans.
    Atkinson CL; Carter HH; Naylor LH; Dawson EA; Marusic P; Hering D; Schlaich MP; Thijssen DH; Green DJ
    J Appl Physiol (1985); 2015 Oct; 119(8):858-64. PubMed ID: 26294751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of muscle training on resting blood flow and forearm vessel diameter in patients with chronic renal failure.
    Kumar S; Seward J; Wilcox A; Torella F
    Br J Surg; 2010 Jun; 97(6):835-8. PubMed ID: 20309951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial function of young healthy males following whole body resistance training.
    Rakobowchuk M; McGowan CL; de Groot PC; Hartman JW; Phillips SM; MacDonald MJ
    J Appl Physiol (1985); 2005 Jun; 98(6):2185-90. PubMed ID: 15677730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid vascular modifications to localized rhythmic handgrip training and detraining: vascular conditioning and deconditioning.
    Alomari MA; Mekary RA; Welsch MA
    Eur J Appl Physiol; 2010 Jul; 109(5):803-9. PubMed ID: 20225082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of exercise training on the diameter dilator response to forearm ischaemia in healthy men.
    Thijssen DH; Tinken TM; Hopkins N; Dawson EA; Cable NT; Green DJ
    Acta Physiol (Oxf); 2011 Apr; 201(4):427-34. PubMed ID: 21054809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined aerobic and resistance training and vascular function: effect of aerobic exercise before and after resistance training.
    Okamoto T; Masuhara M; Ikuta K
    J Appl Physiol (1985); 2007 Nov; 103(5):1655-61. PubMed ID: 17872406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of handgrip training and intermittent compression of upper arm veins on forearm vessels in patients with end-stage renal failure.
    Rus R; Ponikvar R; Kenda RB; Buturović-Ponikvar J
    Ther Apher Dial; 2005 Jun; 9(3):241-4. PubMed ID: 15966998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired endothelial function and blood flow in repetitive strain injury.
    Brunnekreef J; Benda N; Schreuder T; Hopman M; Thijssen D
    Int J Sports Med; 2012 Oct; 33(10):835-41. PubMed ID: 22592545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasoreactivity before and after handgrip training in chronic heart failure patients.
    Credeur DP; Mariappan N; Francis J; Thomas D; Moraes D; Welsch MA
    Atherosclerosis; 2012 Nov; 225(1):154-9. PubMed ID: 23010159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear stress mediates endothelial adaptations to exercise training in humans.
    Tinken TM; Thijssen DH; Hopkins N; Dawson EA; Cable NT; Green DJ
    Hypertension; 2010 Feb; 55(2):312-8. PubMed ID: 20048193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occlusion cuff position is an important determinant of the time course and magnitude of human brachial artery flow-mediated dilation.
    Berry KL; Skyrme-Jones RA; Meredith IT
    Clin Sci (Lond); 2000 Oct; 99(4):261-7. PubMed ID: 10995590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brachial artery adaptation to lower limb exercise training: role of shear stress.
    Birk GK; Dawson EA; Atkinson C; Haynes A; Cable NT; Thijssen DH; Green DJ
    J Appl Physiol (1985); 2012 May; 112(10):1653-8. PubMed ID: 22403347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired brachial artery flow-mediated vasodilation in response to handgrip exercise-induced increases in shear stress in young smokers.
    Findlay BB; Gupta P; Szijgyarto IC; Pyke KE
    Vasc Med; 2013 Apr; 18(2):63-71. PubMed ID: 23548859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brachial artery characteristics and micro-vascular filtration capacity in rock climbers.
    Thompson EB; Farrow L; Hunt JE; Lewis MP; Ferguson RA
    Eur J Sport Sci; 2015; 15(4):296-304. PubMed ID: 25068834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of a cold pressor test on brachial artery handgrip exercise-induced flow-mediated dilation.
    Stuckless TJ; Pyke KE
    Vasc Med; 2015 Oct; 20(5):409-16. PubMed ID: 26021703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thirty minutes of handgrip exercise potentiates flow-mediated dilatation in response to sustained and transient shear stress stimuli to a similar extent.
    McPhee IAC; Pyke KE
    Exp Physiol; 2018 Oct; 103(10):1326-1337. PubMed ID: 30055018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood flow and arterial vessel diameter change during graded handgrip exercise in dominant and non-dominant forearms of tennis players.
    Kagaya A; Ohmori F; Okuyama S; Muraoka Y; Sato K
    Adv Exp Med Biol; 2010; 662():365-70. PubMed ID: 20204817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.