BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22174442)

  • 1. pH regulation in anoxic rice coleoptiles at pH 3.5: biochemical pHstats and net H+ influx in the absence and presence of NOFormula.
    Greenway H; Kulichikhin KY; Cawthray GR; Colmer TD
    J Exp Bot; 2012 Mar; 63(5):1969-83. PubMed ID: 22174442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of acclimation to NaCl by submerged, anoxic rice seedlings.
    Kurniasih B; Greenway H; Colmer TD
    Ann Bot; 2017 Jan; 119(1):129-142. PubMed ID: 27694332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for down-regulation of ethanolic fermentation and K+ effluxes in the coleoptile of rice seedlings during prolonged anoxia.
    Colmer TD; Huang S; Greenway H
    J Exp Bot; 2001 Jul; 52(360):1507-17. PubMed ID: 11457911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses by coleoptiles of intact rice seedlings to anoxia: k(+) net uptake from the external solution and translocation from the caryopses.
    Huang S; Greenway H; Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):271-8. PubMed ID: 12509347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance.
    Shingaki-Wells RN; Huang S; Taylor NL; Carroll AJ; Zhou W; Millar AH
    Plant Physiol; 2011 Aug; 156(4):1706-24. PubMed ID: 21622811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of intracellular pH during anoxia in rice coleoptiles in acidic and near neutral conditions.
    Kulichikhin KY; Greenway H; Byrne L; Colmer TD
    J Exp Bot; 2009; 60(7):2119-28. PubMed ID: 19363206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anoxia tolerance in rice seedlings: exogenous glucose improves growth of an anoxia-'intolerant', but not of a 'tolerant' genotype.
    Huang S; Greenway H; Colmer TD
    J Exp Bot; 2003 Oct; 54(391):2363-73. PubMed ID: 14504303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings.
    Atwell BJ; Greenway H; Colmer TD
    New Phytol; 2015 Apr; 206(1):36-56. PubMed ID: 25472708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis.
    Edwards JM; Roberts TH; Atwell BJ
    J Exp Bot; 2012 Jul; 63(12):4389-402. PubMed ID: 22585748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of ethanol production in anoxic rice coleoptiles by exogenous glucose determines rates of ion fluxes and provides estimates of energy requirements for cell maintenance during anoxia.
    Huang S; Ishizawa K; Greenway H; Colmer TD
    J Exp Bot; 2005 Sep; 56(419):2453-63. PubMed ID: 16061509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soluble sugar availability of aerobically germinated barley, oat and rice coleoptiles in anoxia.
    Kato-Noguchi H; Yasuda Y; Sasaki R
    J Plant Physiol; 2010 Dec; 167(18):1571-6. PubMed ID: 20727618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice (Oryza sativa) coleoptiles under anoxia and re-oxygenation.
    Narsai R; Secco D; Schultz MD; Ecker JR; Lister R; Whelan J
    Plant J; 2017 Feb; 89(4):805-824. PubMed ID: 27859855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanolic fermentation and anoxia tolerance in four rice cultivars.
    Kato-Noguchi H; Morokuma M
    J Plant Physiol; 2007 Feb; 164(2):168-73. PubMed ID: 16483690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia.
    Gibbs J; Morrell S; Valdez A; Setter TL; Greenway H
    J Exp Bot; 2000 Apr; 51(345):785-96. PubMed ID: 10938871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of growth and patterns of gene expression in oxygen-deprived rice coleoptiles.
    Narsai R; Edwards JM; Roberts TH; Whelan J; Joss GH; Atwell BJ
    Plant J; 2015 Apr; 82(1):25-40. PubMed ID: 25650041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein synthesis by rice coleoptiles during prolonged anoxia: implications for glycolysis, growth and energy utilization.
    Huang S; Greenway H; Colmer TD; Millar AH
    Ann Bot; 2005 Sep; 96(4):703-15. PubMed ID: 16027131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of anoxic coleoptile elongation in rice varieties: relationship between coleoptile length and carbohydrate levels, fermentative metabolism and anaerobic gene expression.
    Magneschi L; Kudahettige RL; Alpi A; Perata P
    Plant Biol (Stuttg); 2009 Jul; 11(4):561-73. PubMed ID: 19538394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcript profiling of the anoxic rice coleoptile.
    Lasanthi-Kudahettige R; Magneschi L; Loreti E; Gonzali S; Licausi F; Novi G; Beretta O; Vitulli F; Alpi A; Perata P
    Plant Physiol; 2007 May; 144(1):218-31. PubMed ID: 17369434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the mitochondrial proteome during the anoxia to air transition in rice focus around cytochrome-containing respiratory complexes.
    Millar AH; Trend AE; Heazlewood JL
    J Biol Chem; 2004 Sep; 279(38):39471-8. PubMed ID: 15258153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circumnutational movement in rice coleoptiles involves the gravitropic response: analysis of an agravitropic mutant and space-grown seedlings.
    Kobayashi A; Kim HJ; Tomita Y; Miyazawa Y; Fujii N; Yano S; Yamazaki C; Kamada M; Kasahara H; Miyabayashi S; Shimazu T; Fusejima Y; Takahashi H
    Physiol Plant; 2019 Mar; 165(3):464-475. PubMed ID: 30159898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.