BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22174442)

  • 41. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions.
    Byeon Y; Back K
    J Pineal Res; 2016 Apr; 60(3):348-59. PubMed ID: 26919041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comprehensive Transcriptomic Analysis of Auxin Responses in Submerged Rice Coleoptile Growth.
    Wu YS; Yang CY
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32075118
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression profile of rice Hsp genes under anoxic stress.
    Mertz-Henning LM; Pegoraro C; Maia LC; Venske E; Rombaldi CV; Costa de Oliveira A
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27173349
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Excess copper inhibits the growth of rice seedlings by decreasing uptake of nitrate.
    Huo K; Shangguan X; Xia Y; Shen Z; Chen C
    Ecotoxicol Environ Saf; 2020 Mar; 190():110105. PubMed ID: 31884325
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings: a quantitative proteomic analysis.
    Kutschera U; Deng Z; Oses-Prieto JA; Burlingame AL; Wang ZY
    Plant Signal Behav; 2010 May; 5(5):509-17. PubMed ID: 20234181
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anoxia tolerance in rice roots acclimated by several different periods of hypoxia.
    Kato-Noguchi H
    J Plant Physiol; 2003 May; 160(5):565-8. PubMed ID: 12806786
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions.
    Shi Y; Wang Y; Flowers TJ; Gong H
    J Plant Physiol; 2013 Jun; 170(9):847-53. PubMed ID: 23523465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photomorphogenesis of rice seedlings: a mutant impaired in phytochrome-mediated inhibition of coleoptile growth.
    Biswas KK; Neumann R; Haga K; Yatoh O; Iino M
    Plant Cell Physiol; 2003 Mar; 44(3):242-54. PubMed ID: 12668770
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ammonium uptake and metabolism alleviate PEG-induced water stress in rice seedlings.
    Cao X; Zhong C; Zhu C; Zhu L; Zhang J; Wu L; Jin Q
    Plant Physiol Biochem; 2018 Nov; 132():128-137. PubMed ID: 30189416
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fatty acids of rice coleoptiles in air and anoxia.
    Brown DJ; Beevers H
    Plant Physiol; 1987 Jun; 84(2):555-9. PubMed ID: 16665478
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.).
    Guo F; Han N; Xie Y; Fang K; Yang Y; Zhu M; Wang J; Bian H
    Plant Cell Environ; 2016 Oct; 39(10):2288-302. PubMed ID: 27342100
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphine-induced physiological and biochemical responses in rice seedlings.
    Mi L; Niu X; Lu M; Ma J; Wu J; Zhou X
    Chemosphere; 2014 Apr; 100():77-82. PubMed ID: 24405968
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice.
    Mostofa MG; Hossain MA; Fujita M; Tran LS
    Sci Rep; 2015 Jun; 5():11433. PubMed ID: 26073760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Growth promotion and cell wall changes in rice coleoptiles under microgravity conditions].
    Hoson T; Soga K; Mori R; Nakamura Y; Wakabayashi K; Kamisaka S; Kamigaichi S; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    Biol Sci Space; 1999 Sep; 13(3):264-5. PubMed ID: 12533015
    [No Abstract]   [Full Text] [Related]  

  • 55. Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide.
    Zhou L; Bokhari SA; Dong CJ; Liu JY
    PLoS One; 2011 Feb; 6(2):e16723. PubMed ID: 21347307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exogenous citrate and malate alleviate cadmium stress in Oryza sativa L.: Probing role of cadmium localization and iron nutrition.
    Sebastian A; Prasad MNV
    Ecotoxicol Environ Saf; 2018 Dec; 166():215-222. PubMed ID: 30269017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential expression of two fructokinases in Oryza sativa seedlings grown under aerobic and anaerobic conditions.
    Guglielminetti L; Morita A; Yamaguchi J; Loreti E; Perata P; Alpi A
    J Plant Res; 2006 Jul; 119(4):351-6. PubMed ID: 16639503
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phloem metabolism and function have to cope with low internal oxygen.
    van Dongen JT; Schurr U; Pfister M; Geigenberger P
    Plant Physiol; 2003 Apr; 131(4):1529-43. PubMed ID: 12692313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Indoleacetic Acid Levels in Wheat and Rice Seedlings under Oxygen Deficiency and Subsequent Reoxygenation.
    Yemelyanov VV; Lastochkin VV; Chirkova TV; Lindberg SM; Shishova MF
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32054127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress.
    Song SY; Chen Y; Chen J; Dai XY; Zhang WH
    Planta; 2011 Aug; 234(2):331-45. PubMed ID: 21448719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.