These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22174733)

  • 21. Four distances between pairs of amino acids provide a precise description of their interaction.
    Cohen M; Potapov V; Schreiber G
    PLoS Comput Biol; 2009 Aug; 5(8):e1000470. PubMed ID: 19680437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 3D sequence-independent representation of the protein data bank.
    Fischer D; Tsai CJ; Nussinov R; Wolfson H
    Protein Eng; 1995 Oct; 8(10):981-97. PubMed ID: 8771179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smoothing 3D protein structure motifs through graph mining and amino acid similarities.
    Dhifli W; Saidi R; Nguifo EM
    J Comput Biol; 2014 Feb; 21(2):162-72. PubMed ID: 24117330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Packing of secondary structural elements in proteins. Analysis and prediction of inter-helix distances.
    Reddy BV; Blundell TL
    J Mol Biol; 1993 Oct; 233(3):464-79. PubMed ID: 8411156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pairwise amino acid secondary structural propensities.
    Chemmama IE; Chapagain PP; Gerstman BS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042709. PubMed ID: 25974529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A reexamination of correlations of amino acids with particular secondary structures.
    Malkov SN; Zivković MV; Beljanski MV; Stojanović SD; Zarić SD
    Protein J; 2009 Feb; 28(2):74-86. PubMed ID: 19280326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Logos for amino-acid preferences in different backbone packing density regions of protein structural classes.
    Kannan N; Schneider TD; Vishveshwara S
    Acta Crystallogr D Biol Crystallogr; 2000 Sep; 56(Pt 9):1156-65. PubMed ID: 10957634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complex salt bridges in proteins: statistical analysis of structure and function.
    Musafia B; Buchner V; Arad D
    J Mol Biol; 1995 Dec; 254(4):761-70. PubMed ID: 7500348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of DNA with clusters of amino acids in proteins.
    Sathyapriya R; Vishveshwara S
    Nucleic Acids Res; 2004; 32(14):4109-18. PubMed ID: 15302912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DistAA: Database of amino acid distances in proteins and web application for statistical review of distances.
    Maljković MM
    Comput Biol Chem; 2019 Dec; 83():107130. PubMed ID: 31593887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SpeeDB: fast structural protein searches.
    Robillard DE; Mpangase PT; Hazelhurst S; Dehne F
    Bioinformatics; 2015 Sep; 31(18):3027-34. PubMed ID: 25979473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic disorder in the Protein Data Bank.
    Le Gall T; Romero PR; Cortese MS; Uversky VN; Dunker AK
    J Biomol Struct Dyn; 2007 Feb; 24(4):325-42. PubMed ID: 17206849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of residue conformations in peptides in Cambridge structural database and protein-peptide structural complexes.
    Raghavender US
    Chem Biol Drug Des; 2017 Mar; 89(3):428-442. PubMed ID: 27589215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disordered Residues and Patterns in the Protein Data Bank.
    Lobanov MY; Likhachev IV; Galzitskaya OV
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32230759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing the regularity of tetrahedral packing motifs in protein tertiary structure.
    Day R; Lennox KP; Dahl DB; Vannucci M; Tsai JW
    Bioinformatics; 2010 Dec; 26(24):3059-66. PubMed ID: 21047817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analysis of the packing topology of structurally important residues in helical membrane and soluble proteins.
    Pabuwal V; Li Z
    Protein Eng Des Sel; 2009 Feb; 22(2):67-73. PubMed ID: 19054790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of information theory to a three-body coarse-grained representation of proteins in the PDB: insights into the structural and evolutionary roles of residues in protein structure.
    Thompson JJ; Tabatabaei Ghomi H; Lill MA
    Proteins; 2014 Dec; 82(12):3450-65. PubMed ID: 25269778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural model of MD-2 and functional role of its basic amino acid clusters involved in cellular lipopolysaccharide recognition.
    Gruber A; Mancek M; Wagner H; Kirschning CJ; Jerala R
    J Biol Chem; 2004 Jul; 279(27):28475-82. PubMed ID: 15111623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.
    Topham CM; Smith JC
    Comput Biol Chem; 2015 Feb; 54():33-43. PubMed ID: 25544680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.