These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22174743)

  • 1. A simple and objective method for reproducible resting state network (RSN) detection in fMRI.
    Pendse GV; Borsook D; Becerra L
    PLoS One; 2011; 6(12):e27594. PubMed ID: 22174743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized RAICAR: discover homogeneous subject (sub)groups by reproducibility of their intrinsic connectivity networks.
    Yang Z; Zuo XN; Wang P; Li Z; LaConte SM; Bandettini PA; Hu XP
    Neuroimage; 2012 Oct; 63(1):403-14. PubMed ID: 22789741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistency of network modules in resting-state FMRI connectome data.
    Moussa MN; Steen MR; Laurienti PJ; Hayasaka S
    PLoS One; 2012; 7(8):e44428. PubMed ID: 22952978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of analysis methods on the reproducibility and reliability of resting-state networks.
    Franco AR; Mannell MV; Calhoun VD; Mayer AR
    Brain Connect; 2013; 3(4):363-74. PubMed ID: 23705789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Group ICA of resting-state data: a comparison.
    Schöpf V; Windischberger C; Kasess CH; Lanzenberger R; Moser E
    MAGMA; 2010 Dec; 23(5-6):317-25. PubMed ID: 20521082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis.
    Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information Flow Between Resting-State Networks.
    Diez I; Erramuzpe A; Escudero I; Mateos B; Cabrera A; Marinazzo D; Sanz-Arigita EJ; Stramaglia S; Cortes Diaz JM;
    Brain Connect; 2015 Nov; 5(9):554-64. PubMed ID: 26177254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining spatial independent component analysis with regression to identify the subcortical components of resting-state FMRI functional networks.
    Malherbe C; Messé A; Bardinet E; Pélégrini-Issac M; Perlbarg V; Marrelec G; Worbe Y; Yelnik J; Lehéricy S; Benali H
    Brain Connect; 2014 Apr; 4(3):181-92. PubMed ID: 24575752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-level bootstrap analysis of stable clusters in resting-state fMRI.
    Bellec P; Rosa-Neto P; Lyttelton OC; Benali H; Evans AC
    Neuroimage; 2010 Jul; 51(3):1126-39. PubMed ID: 20226257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-locking of resting-state brain networks with the gastric basal electrical rhythm.
    Choe AS; Tang B; Smith KR; Honari H; Lindquist MA; Caffo BS; Pekar JJ
    PLoS One; 2021; 16(1):e0244756. PubMed ID: 33400717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved correspondence of resting-state networks after macroanatomical alignment.
    Frost MA; Esposito F; Goebel R
    Hum Brain Mapp; 2014 Feb; 35(2):673-82. PubMed ID: 23161519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducibility and Temporal Structure in Weekly Resting-State fMRI over a Period of 3.5 Years.
    Choe AS; Jones CK; Joel SE; Muschelli J; Belegu V; Caffo BS; Lindquist MA; van Zijl PC; Pekar JJ
    PLoS One; 2015; 10(10):e0140134. PubMed ID: 26517540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial vs. Temporal Features in ICA of Resting-State fMRI - A Quantitative and Qualitative Investigation in the Context of Response Inhibition.
    Tian L; Kong Y; Ren J; Varoquaux G; Zang Y; Smith SM
    PLoS One; 2013; 8(6):e66572. PubMed ID: 23825545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust reproducible resting state networks in the awake rodent brain.
    Becerra L; Pendse G; Chang PC; Bishop J; Borsook D
    PLoS One; 2011; 6(10):e25701. PubMed ID: 22028788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-linear ICA Analysis of Resting-State fMRI in Mild Cognitive Impairment.
    Bi XA; Sun Q; Zhao J; Xu Q; Wang L
    Front Neurosci; 2018; 12():413. PubMed ID: 29970984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DisConICA: a Software Package for Assessing Reproducibility of Brain Networks and their Discriminability across Disorders.
    Syed MA; Yang Z; Rangaprakash D; Hu X; Dretsch MN; Katz JS; Denney TS; Deshpande G
    Neuroinformatics; 2020 Jan; 18(1):87-107. PubMed ID: 31187352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
    Wang N; Zeng W; Chen L
    J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal complexity of fMRI is reproducible and correlates with higher order cognition.
    Omidvarnia A; Zalesky A; Mansour L S; Van De Ville D; Jackson GD; Pedersen M
    Neuroimage; 2021 Apr; 230():117760. PubMed ID: 33486124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining language networks from resting-state fMRI for surgical planning--a feasibility study.
    Tie Y; Rigolo L; Norton IH; Huang RY; Wu W; Orringer D; Mukundan S; Golby AJ
    Hum Brain Mapp; 2014 Mar; 35(3):1018-30. PubMed ID: 23288627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.