BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 22174747)

  • 41. Bcl-xL-mediated remodeling of rod and cone synaptic mitochondria after postnatal lead exposure: electron microscopy, tomography and oxygen consumption.
    Perkins GA; Scott R; Perez A; Ellisman MH; Johnson JE; Fox DA
    Mol Vis; 2012; 18():3029-48. PubMed ID: 23288995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of Energy Metabolism in Skeletal Muscle Mitochondria Following Radiation Exposure.
    Kim EJ; Lee M; Kim DY; Kim KI; Yi JY
    Cells; 2019 Aug; 8(9):. PubMed ID: 31438652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ionizing radiation-induced cell death is partly caused by increase of mitochondrial reactive oxygen species in normal human fibroblast cells.
    Kobashigawa S; Kashino G; Suzuki K; Yamashita S; Mori H
    Radiat Res; 2015 Apr; 183(4):455-64. PubMed ID: 25807320
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of mitochondrial redox status and energy metabolism of X-irradiated HeLa cells by LC/UV, LC/MS/MS and ESR.
    Yamamoto K; Ikenaka Y; Ichise T; Bo T; Ishizuka M; Yasui H; Hiraoka W; Yamamori T; Inanami O
    Free Radic Res; 2018 Jun; 52(6):648-660. PubMed ID: 29620489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Y
    Porosnicu I; Butnaru CM; Tiseanu I; Stancu E; Munteanu CVA; Bita BI; Duliu OG; Sima F
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34199757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Early mitochondrial dysfunction in electron transfer activity and reactive oxygen species generation after cardiac arrest.
    Han F; Da T; Riobo NA; Becker LB
    Crit Care Med; 2008 Nov; 36(11 Suppl):S447-53. PubMed ID: 20449909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic loss of insulin receptors worsens cardiac efficiency in diabetes.
    Bugger H; Riehle C; Jaishy B; Wende AR; Tuinei J; Chen D; Soto J; Pires KM; Boudina S; Theobald HA; Luptak I; Wayment B; Wang X; Litwin SE; Weimer BC; Abel ED
    J Mol Cell Cardiol; 2012 May; 52(5):1019-26. PubMed ID: 22342406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence.
    Shabalina IG; Vrbacký M; Pecinová A; Kalinovich AV; Drahota Z; Houštěk J; Mráček T; Cannon B; Nedergaard J
    Biochim Biophys Acta; 2014 Dec; 1837(12):2017-2030. PubMed ID: 24769119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial Effects in the Liver of C57BL/6 Mice by Low Dose, High Energy, High Charge Irradiation.
    Barnette BL; Yu Y; Ullrich RL; Emmett MR
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PPARα Is Necessary for Radiation-Induced Activation of Noncanonical TGFβ Signaling in the Heart.
    Subramanian V; Borchard S; Azimzadeh O; Sievert W; Merl-Pham J; Mancuso M; Pasquali E; Multhoff G; Popper B; Zischka H; Atkinson MJ; Tapio S
    J Proteome Res; 2018 Apr; 17(4):1677-1689. PubMed ID: 29560722
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation.
    Malinska D; Kulawiak B; Kudin AP; Kovacs R; Huchzermeyer C; Kann O; Szewczyk A; Kunz WS
    Biochim Biophys Acta; 2010; 1797(6-7):1163-70. PubMed ID: 20211146
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.
    Yamamori T; Yasui H; Yamazumi M; Wada Y; Nakamura Y; Nakamura H; Inanami O
    Free Radic Biol Med; 2012 Jul; 53(2):260-70. PubMed ID: 22580337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats.
    Gvozdjáková A; Kucharská J; Kura B; Vančová O; Rausová Z; Sumbalová Z; Uličná O; Slezák J
    Can J Physiol Pharmacol; 2020 Jan; 98(1):29-34. PubMed ID: 31536712
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation.
    Yoshida T; Goto S; Kawakatsu M; Urata Y; Li TS
    Free Radic Res; 2012 Feb; 46(2):147-53. PubMed ID: 22126415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in lowdose irradiated human fibroblasts.
    Shimura T; Sasatani M; Kamiya K; Kawai H; Inaba Y; Kunugita N
    Oncotarget; 2016 Jan; 7(3):3559-70. PubMed ID: 26657292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1.
    De Filippis B; Valenti D; de Bari L; De Rasmo D; Musto M; Fabbri A; Ricceri L; Fiorentini C; Laviola G; Vacca RA
    Free Radic Biol Med; 2015 Jun; 83():167-77. PubMed ID: 25708779
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biochemical and Molecular Alterations Following Arsenic-Induced Oxidative Stress and Mitochondrial Dysfunction in Rat Brain.
    Prakash C; Soni M; Kumar V
    Biol Trace Elem Res; 2015 Sep; 167(1):121-9. PubMed ID: 25764338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo space radiation-induced non-targeted responses: late effects on molecular signaling in mitochondria.
    Jain MR; Li M; Chen W; Liu T; de Toledo SM; Pandey BN; Li H; Rabin BM; Azzam EI
    Curr Mol Pharmacol; 2011 Jun; 4(2):106-14. PubMed ID: 21166651
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hepatic Mitochondrial Defects in a Nonalcoholic Fatty Liver Disease Mouse Model Are Associated with Increased Degradation of Oxidative Phosphorylation Subunits.
    Lee K; Haddad A; Osme A; Kim C; Borzou A; Ilchenko S; Allende D; Dasarathy S; McCullough A; Sadygov RG; Kasumov T
    Mol Cell Proteomics; 2018 Dec; 17(12):2371-2386. PubMed ID: 30171159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.