BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22174807)

  • 21. Evaluation of nine popular de novo assemblers in microbial genome assembly.
    Forouzan E; Maleki MSM; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2017 Dec; 143():32-37. PubMed ID: 28939423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of metagenomic assembly using simulated next generation sequencing data.
    Mende DR; Waller AS; Sunagawa S; Järvelin AI; Chan MM; Arumugam M; Raes J; Bork P
    PLoS One; 2012; 7(2):e31386. PubMed ID: 22384016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies.
    Blanc-Mathieu R; Verhelst B; Derelle E; Rombauts S; Bouget FY; Carré I; Château A; Eyre-Walker A; Grimsley N; Moreau H; Piégu B; Rivals E; Schackwitz W; Van de Peer Y; Piganeau G
    BMC Genomics; 2014 Dec; 15(1):1103. PubMed ID: 25494611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystallizing short-read assemblies around seeds.
    Hossain MS; Azimi N; Skiena S
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S16. PubMed ID: 19208115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the switchgrass transcriptome using second-generation sequencing technology.
    Wang Y; Zeng X; Iyer NJ; Bryant DW; Mockler TC; Mahalingam R
    PLoS One; 2012; 7(3):e34225. PubMed ID: 22479570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome.
    Faino L; Seidl MF; Datema E; van den Berg GC; Janssen A; Wittenberg AH; Thomma BP
    mBio; 2015 Aug; 6(4):. PubMed ID: 26286689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ABySS: a parallel assembler for short read sequence data.
    Simpson JT; Wong K; Jackman SD; Schein JE; Jones SJ; Birol I
    Genome Res; 2009 Jun; 19(6):1117-23. PubMed ID: 19251739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blue: correcting sequencing errors using consensus and context.
    Greenfield P; Duesing K; Papanicolaou A; Bauer DC
    Bioinformatics; 2014 Oct; 30(19):2723-32. PubMed ID: 24919879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggressive assembly of pyrosequencing reads with mates.
    Miller JR; Delcher AL; Koren S; Venter E; Walenz BP; Brownley A; Johnson J; Li K; Mobarry C; Sutton G
    Bioinformatics; 2008 Dec; 24(24):2818-24. PubMed ID: 18952627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation.
    Pollo SMJ; Reiling SJ; Wit J; Workentine ML; Guy RA; Batoff GW; Yee J; Dixon BR; Wasmuth JD
    Parasit Vectors; 2020 Feb; 13(1):108. PubMed ID: 32111234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing.
    Goldstein S; Beka L; Graf J; Klassen JL
    BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads.
    Wick RR; Judd LM; Gorrie CL; Holt KE
    PLoS Comput Biol; 2017 Jun; 13(6):e1005595. PubMed ID: 28594827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes.
    Haiminen N; Feltus FA; Parida L
    BMC Genomics; 2011 Apr; 12():194. PubMed ID: 21496274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies.
    Boisvert S; Laviolette F; Corbeil J
    J Comput Biol; 2010 Nov; 17(11):1519-33. PubMed ID: 20958248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SRAssembler: Selective Recursive local Assembly of homologous genomic regions.
    McCarthy TW; Chou HC; Brendel VP
    BMC Bioinformatics; 2019 Jul; 20(1):371. PubMed ID: 31266441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling™ Data.
    Madoui MA; Dossat C; d'Agata L; van Oeveren J; van der Vossen E; Aury JM
    BMC Bioinformatics; 2016 Mar; 17():115. PubMed ID: 26936254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo sequencing of plant genomes using second-generation technologies.
    Imelfort M; Edwards D
    Brief Bioinform; 2009 Nov; 10(6):609-18. PubMed ID: 19933209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.