These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2217517)

  • 1. Sodium arsanilate-induced vestibular dysfunction in rats: effects on open-field behavior and spontaneous activity in the automated digiscan monitoring system.
    Ossenkopp KP; Prkacin A; Hargreaves EL
    Pharmacol Biochem Behav; 1990 Aug; 36(4):875-81. PubMed ID: 2217517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium arsanilate-induced vestibular dysfunction in meadow voles (Microtus pennsylvanicus): effects on posture, spontaneous locomotor activity and swimming behavior.
    Ossenkopp KP; Eckel LA; Hargreaves EL; Kavaliers M
    Behav Brain Res; 1992 Mar; 47(1):13-22. PubMed ID: 1571099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial learning in an enclosed eight-arm radial maze in rats with sodium arsanilate-induced labyrinthectomies.
    Ossenkopp KP; Hargreaves EL
    Behav Neural Biol; 1993 May; 59(3):253-7. PubMed ID: 8503830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intratympanic injection of sodium arsanilate (atoxyl) solution results in postural changes consistent with changes described for labyrinthectomized rats.
    Hunt MA; Miller SW; Nielson HC; Horn KM
    Behav Neurosci; 1987 Jun; 101(3):427-8. PubMed ID: 3606813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reductions in body temperature and spontaneous activity in rats exposed to horizontal rotation: abolition following chemical labyrinthectomy.
    Ossenkopp KP; Rabi YJ; Eckel LA; Hargreaves EL
    Physiol Behav; 1994 Aug; 56(2):319-24. PubMed ID: 7938244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the involvement of NMDA receptors in vestibular compensation.
    Aoki M; Miyata H; Mizuta K; Ito Y
    J Vestib Res; 1996; 6(4):315-7. PubMed ID: 8839826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for studying the effects of neurochemicals on long-term compensation in unilaterally labyrinthectomized rats.
    Andersson L; Ulfendahl M; Tham R
    J Neural Transplant Plast; 1997; 6(2):105-13. PubMed ID: 9306242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevention of vestibular deafferentation-induced spontaneous nystagmus with pretreatment of Ca2+ channel/N-methyl-D-aspartic acid receptor antagonists in guinea pigs.
    Aoki M; Ito Y; Miyata H
    Acta Otolaryngol; 1998 Jul; 118(4):554-6. PubMed ID: 9726682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The toxic action of some compounds on the inner ear and its central vestibular connections; an experimental investigation with reference to nitrogen mustards and sodium arsanilate (atoxyl).
    DIAMANT H
    AMA Arch Otolaryngol; 1958 May; 67(5):546-52. PubMed ID: 13520025
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of thyrotropin-releasing hormone on vestibular compensation in primates.
    Ishii M; Igarashi M
    Am J Otolaryngol; 1986; 7(3):177-80. PubMed ID: 3089045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats.
    Vignaux G; Chabbert C; Gaboyard-Niay S; Travo C; Machado ML; Denise P; Comoz F; Hitier M; Landemore G; Philoxène B; Besnard S
    Toxicol Appl Pharmacol; 2012 Jan; 258(1):61-71. PubMed ID: 22023963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethovision™ analysis of open field behaviour in rats following bilateral vestibular loss.
    Aitken P; Zheng Y; Smith PF
    J Vestib Res; 2017; 27(2-3):89-101. PubMed ID: 29064826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.
    Tighilet B; Leonard J; Bernard-Demanze L; Lacour M
    Eur J Pharmacol; 2015 Dec; 769():342-9. PubMed ID: 26607469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual-vestibular interactions during vestibular compensation: role of the pretectal not in horizontal VOR recovery after hemilabyrinthectomy in rhesus monkey.
    Stewart CM; Mustari MJ; Perachio AA
    J Neurophysiol; 2005 Oct; 94(4):2653-66. PubMed ID: 15758055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The vestibular system: from structure to function].
    Collard M
    Rev Prat; 1994 Feb; 44(3):295-8. PubMed ID: 8178092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vestibulo-oculomotor behaviour in rats following a transient unilateral vestibular loss induced by lidocaine.
    Magnusson AK; Tham R
    Neuroscience; 2003; 120(4):1105-14. PubMed ID: 12927215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery from unilateral labyrinthectomy in rhesus monkey.
    Fetter M; Zee DS
    J Neurophysiol; 1988 Feb; 59(2):370-93. PubMed ID: 3258362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haloperidol exaggerates proprioceptive-tactile support reflexes and diminishes vestibular dominance over them.
    Cordover AJ; Pellis SM; Teitelbaum P
    Behav Brain Res; 1993 Sep; 56(2):197-201. PubMed ID: 8240715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicergoline facilitates vestibular compensation in aged male rats with unilateral labyrinthectomy.
    Rampello L; Drago F
    Neurosci Lett; 1999 May; 267(2):93-6. PubMed ID: 10400220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early compensation of vestibulo-oculomotor symptoms after unilateral vestibular loss in rats is related to GABA(B) receptor function.
    Magnusson AK; Ulfendahl M; Tham R
    Neuroscience; 2002; 111(3):625-34. PubMed ID: 12031349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.