These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 22176209)
1. Molecular orientation of tropoelastin is determined by surface hydrophobicity. Le Brun AP; Chow J; Bax DV; Nelson A; Weiss AS; James M Biomacromolecules; 2012 Feb; 13(2):379-86. PubMed ID: 22176209 [TBL] [Abstract][Full Text] [Related]
2. Linker-free covalent attachment of the extracellular matrix protein tropoelastin to a polymer surface for directed cell spreading. Bax DV; McKenzie DR; Weiss AS; Bilek MM Acta Biomater; 2009 Nov; 5(9):3371-81. PubMed ID: 19463976 [TBL] [Abstract][Full Text] [Related]
3. Interaction forces for symmetric hydrophilic and hydrophobic systems in aqueous isopropanol solutions. Hupka L; Nalaskowski J; Miller JD Langmuir; 2010 Feb; 26(4):2200-8. PubMed ID: 20063871 [TBL] [Abstract][Full Text] [Related]
4. Binding of the cell adhesive protein tropoelastin to PTFE through plasma immersion ion implantation treatment. Bax DV; Wang Y; Li Z; Maitz PK; McKenzie DR; Bilek MM; Weiss AS Biomaterials; 2011 Aug; 32(22):5100-11. PubMed ID: 21527206 [TBL] [Abstract][Full Text] [Related]
5. Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode. Bax DV; Tipa RS; Kondyurin A; Higgins MJ; Tsoutas K; Gelmi A; Wallace GG; McKenzie DR; Weiss AS; Bilek MM Acta Biomater; 2012 Jul; 8(7):2538-48. PubMed ID: 22426287 [TBL] [Abstract][Full Text] [Related]
6. Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared-visible sum frequency generation and fluorescence microscopy. Kim J; Somorjai GA J Am Chem Soc; 2003 Mar; 125(10):3150-8. PubMed ID: 12617683 [TBL] [Abstract][Full Text] [Related]
7. Directed cell attachment by tropoelastin on masked plasma immersion ion implantation treated PTFE. Bax DV; McKenzie DR; Bilek MM; Weiss AS Biomaterials; 2011 Oct; 32(28):6710-8. PubMed ID: 21669455 [TBL] [Abstract][Full Text] [Related]
8. Interaction and destabilization of a monoclonal antibody and albumin to surfaces of varying functionality and hydrophobicity. Couston RG; Lamprou DA; Uddin S; van der Walle CF Int J Pharm; 2012 Nov; 438(1-2):71-80. PubMed ID: 22982165 [TBL] [Abstract][Full Text] [Related]
9. Surface plasma modification and tropoelastin coating of a polyurethane co-polymer for enhanced cell attachment and reduced thrombogenicity. Bax DV; Kondyurin A; Waterhouse A; McKenzie DR; Weiss AS; Bilek MM Biomaterials; 2014 Aug; 35(25):6797-809. PubMed ID: 24856106 [TBL] [Abstract][Full Text] [Related]
11. Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Zhang N; Pompe T; Amin I; Luxenhofer R; Werner C; Jordan R Macromol Biosci; 2012 Jul; 12(7):926-36. PubMed ID: 22610725 [TBL] [Abstract][Full Text] [Related]
12. Adsorption behaviour and surfactant elution of cationic salivary proteins at solid/liquid interfaces, studied by in situ ellipsometry. Svendsen IE; Lindh L; Arnebrant T Colloids Surf B Biointerfaces; 2006 Dec; 53(2):157-66. PubMed ID: 17029761 [TBL] [Abstract][Full Text] [Related]
13. "Setting paint" analogy for the hydrophobic self-association of tropoelastin into elastin-like hydrogel. Naumann C; Mithieux SM; Szekely D; Tu Y; Weiss AS; Kuchel PW Biopolymers; 2009 May; 91(5):321-30. PubMed ID: 19137573 [TBL] [Abstract][Full Text] [Related]
14. Surface modification to control protein/surface interactions. Yuan L; Yu Q; Li D; Chen H Macromol Biosci; 2011 Aug; 11(8):1031-40. PubMed ID: 21337519 [TBL] [Abstract][Full Text] [Related]
15. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. Mermut O; Phillips DC; York RL; McCrea KR; Ward RS; Somorjai GA J Am Chem Soc; 2006 Mar; 128(11):3598-607. PubMed ID: 16536533 [TBL] [Abstract][Full Text] [Related]
16. Using in situ X-ray reflectivity to study protein adsorption on hydrophilic and hydrophobic surfaces: benefits and limitations. Richter AG; Kuzmenko I Langmuir; 2013 Apr; 29(17):5167-80. PubMed ID: 23586436 [TBL] [Abstract][Full Text] [Related]
17. Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions. Puddu V; Perry CC ACS Nano; 2012 Jul; 6(7):6356-63. PubMed ID: 22725630 [TBL] [Abstract][Full Text] [Related]
18. Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Nivison-Smith L; Rnjak J; Weiss AS Acta Biomater; 2010 Feb; 6(2):354-9. PubMed ID: 19671457 [TBL] [Abstract][Full Text] [Related]
19. Interfacial energetics of blood plasma and serum adsorption to a hydrophobic self-assembled monolayer surface. Krishnan A; Cha P; Liu YH; Allara D; Vogler EA; Biomaterials; 2006 Jun; 27(17):3187-94. PubMed ID: 16494939 [TBL] [Abstract][Full Text] [Related]