BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22176578)

  • 1. New rhodamine nitroxide based fluorescent probes for intracellular hydroxyl radical identification in living cells.
    Yapici NB; Jockusch S; Moscatelli A; Mandalapu SR; Itagaki Y; Bates DK; Wiseman S; Gibson KM; Turro NJ; Bi L
    Org Lett; 2012 Jan; 14(1):50-3. PubMed ID: 22176578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodamine cyclic hydrazide as a fluorescent probe for the detection of hydroxyl radicals.
    Kim M; Ko SK; Kim H; Shin I; Tae J
    Chem Commun (Camb); 2013 Sep; 49(72):7959-61. PubMed ID: 23903522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence and HPLC Detection of Hydroxyl Radical by a Rhodamine-Nitroxide Probe and its Application in Cell Imaging.
    Cao L; Wu Q; Li Q; Shao S; Guo Y
    J Fluoresc; 2014 Mar; 24(2):313-8. PubMed ID: 24287971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perylenebisimide-linked nitroxide for the detection of hydroxyl radicals.
    Maki T; Soh N; Fukaminato T; Nakajima H; Nakano K; Imato T
    Anal Chim Acta; 2009 Apr; 639(1-2):78-82. PubMed ID: 19345762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new highly selective and sensitive assay for fluorescence imaging of *OH in living cells: effectively avoiding the interference of peroxynitrite.
    Li P; Xie T; Duan X; Yu F; Wang X; Tang B
    Chemistry; 2010 Feb; 16(6):1834-40. PubMed ID: 20014077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-imaging of hydroxyl radicals in plant cells using the fluorescent molecular probe rhodamine B hydrazide, without any pretreatment.
    Asano M; Doi M; Baba K; Taniguchi M; Shibano M; Tanaka S; Sakaguchi M; Takaoka M; Hirata M; Yanagihara R; Nakahara R; Hayashi Y; Yamaguchi T; Matsumura H; Fujita Y
    J Biosci Bioeng; 2014 Jul; 118(1):98-100. PubMed ID: 24485745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rhodamine-hydroxamic acid-based fluorescent probe for hypochlorous acid and its applications to biological imagings.
    Yang YK; Cho HJ; Lee J; Shin I; Tae J
    Org Lett; 2009 Feb; 11(4):859-61. PubMed ID: 19166288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodamine-based highly sensitive colorimetric off-on fluorescent chemosensor for Hg2+ in aqueous solution and for live cell imaging.
    Wang H; Li Y; Xu S; Li Y; Zhou C; Fei X; Sun L; Zhang C; Li Y; Yang Q; Xu X
    Org Biomol Chem; 2011 Apr; 9(8):2850-5. PubMed ID: 21365102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly selective and sensitive fluorescent probe for Hg(2+) imaging in live cells based on a rhodamine-thioamide-alkyne scaffold.
    Lin W; Cao X; Ding Y; Yuan L; Long L
    Chem Commun (Camb); 2010 May; 46(20):3529-31. PubMed ID: 20379584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new rhodamine-based chemosensor for Cu2+ and the study of its behaviour in living cells.
    Huang L; Wang X; Xie G; Xi P; Li Z; Xu M; Wu Y; Bai D; Zeng Z
    Dalton Trans; 2010 Sep; 39(34):7894-6. PubMed ID: 20672168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodamine-based chemosensor for Hg(2+) in aqueous solution with a broad pH range and its application in live cell imaging.
    Zhao Y; Sun Y; Lv X; Liu Y; Chen M; Guo W
    Org Biomol Chem; 2010 Sep; 8(18):4143-7. PubMed ID: 20652184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of 2',7'-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals.
    Wrona M; Patel K; Wardman P
    Free Radic Biol Med; 2005 Jan; 38(2):262-70. PubMed ID: 15607909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ratiometric fluorescent probe for the detection of hydroxyl radicals in living cells.
    Meng L; Wu Y; Yi T
    Chem Commun (Camb); 2014 May; 50(37):4843-5. PubMed ID: 24686530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodamine-based fluorogenic probe for imaging biological thiol.
    Shibata A; Furukawa K; Abe H; Tsuneda S; Ito Y
    Bioorg Med Chem Lett; 2008 Apr; 18(7):2246-9. PubMed ID: 18358719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical detection with a salicylate probe using modified CUPRAC spectrophotometry and HPLC.
    Bektaşoğlu B; Ozyürek M; Güçlü K; Apak R
    Talanta; 2008 Oct; 77(1):90-7. PubMed ID: 18804604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods to measure the reactivity of peroxynitrite-derived oxidants toward reduced fluoresceins and rhodamines.
    Wardman P
    Methods Enzymol; 2008; 441():261-82. PubMed ID: 18554539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicolor protein labeling in living cells using mutant β-lactamase-tag technology.
    Watanabe S; Mizukami S; Hori Y; Kikuchi K
    Bioconjug Chem; 2010 Dec; 21(12):2320-6. PubMed ID: 20961132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells.
    Yang Z; She M; Yin B; Cui J; Zhang Y; Sun W; Li J; Shi Z
    J Org Chem; 2012 Jan; 77(2):1143-7. PubMed ID: 22176038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodamine-based chemosensing monolayers on glass as a facile fluorescent "turn-on" sensing film for selective detection of Pb2+.
    Ju H; Lee MH; Kim J; Kim JS; Kim J
    Talanta; 2011 Feb; 83(5):1359-63. PubMed ID: 21238721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly selective and sensitive fluorescence probe for the hypochlorite anion.
    Chen X; Wang X; Wang S; Shi W; Wang K; Ma H
    Chemistry; 2008; 14(15):4719-24. PubMed ID: 18386284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.