These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 22176699)
41. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries. Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097 [TBL] [Abstract][Full Text] [Related]
42. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. Kumar B; Lee KY; Park HK; Chae SJ; Lee YH; Kim SW ACS Nano; 2011 May; 5(5):4197-204. PubMed ID: 21495657 [TBL] [Abstract][Full Text] [Related]
43. Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Yang Y; Xie C; Ruffo R; Peng H; Kim DK; Cui Y Nano Lett; 2009 Dec; 9(12):4109-14. PubMed ID: 19807129 [TBL] [Abstract][Full Text] [Related]
44. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Morcrette M; Rozier P; Dupont L; Mugnier E; Sannier L; Galy J; Tarascon JM Nat Mater; 2003 Nov; 2(11):755-61. PubMed ID: 14578878 [TBL] [Abstract][Full Text] [Related]
45. Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. Wang XL; Han WQ; Chen J; Graetz J ACS Appl Mater Interfaces; 2010 May; 2(5):1548-51. PubMed ID: 20443576 [TBL] [Abstract][Full Text] [Related]
46. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Hu L; Wu H; Hong SS; Cui L; McDonough JR; Bohy S; Cui Y Chem Commun (Camb); 2011 Jan; 47(1):367-9. PubMed ID: 20830432 [TBL] [Abstract][Full Text] [Related]
47. Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. Kim SW; Han TH; Kim J; Gwon H; Moon HS; Kang SW; Kim SO; Kang K ACS Nano; 2009 May; 3(5):1085-90. PubMed ID: 19397336 [TBL] [Abstract][Full Text] [Related]
48. Nanocrystal-constructed mesoporous single-crystalline Co₃O₄ nanobelts with superior rate capability for advanced lithium-ion batteries. Huang H; Zhu W; Tao X; Xia Y; Yu Z; Fang J; Gan Y; Zhang W ACS Appl Mater Interfaces; 2012 Nov; 4(11):5974-80. PubMed ID: 23054348 [TBL] [Abstract][Full Text] [Related]
49. LiCo(x)Mn(1-x)PO4/C: a high performing nanocomposite cathode material for lithium rechargeable batteries. Nithya C; Thirunakaran R; Sivashanmugam A; Gopukumar S Chem Asian J; 2012 Jan; 7(1):163-8. PubMed ID: 22002902 [TBL] [Abstract][Full Text] [Related]
50. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries. Dong S; Chen X; Zhang K; Gu L; Zhang L; Zhou X; Li L; Liu Z; Han P; Xu H; Yao J; Zhang C; Zhang X; Shang C; Cui G; Chen L Chem Commun (Camb); 2011 Oct; 47(40):11291-3. PubMed ID: 21927745 [TBL] [Abstract][Full Text] [Related]
51. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Cui LF; Ruffo R; Chan CK; Peng H; Cui Y Nano Lett; 2009 Jan; 9(1):491-5. PubMed ID: 19105648 [TBL] [Abstract][Full Text] [Related]
52. A review of nanostructured lithium ion battery materials via low temperature synthesis. Chen J Recent Pat Nanotechnol; 2013 Jan; 7(1):2-12. PubMed ID: 22747718 [TBL] [Abstract][Full Text] [Related]
53. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Scott ID; Jung YS; Cavanagh AS; Yan Y; Dillon AC; George SM; Lee SH Nano Lett; 2011 Feb; 11(2):414-8. PubMed ID: 21166425 [TBL] [Abstract][Full Text] [Related]
54. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries. Sun C; Rajasekhara S; Dong Y; Goodenough JB ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744 [TBL] [Abstract][Full Text] [Related]
55. Nanocomposite of LiFePO4 and mesoporous carbon for high power cathode of lithium rechargeable batteries. Kim JI; Roh KC; Lee JW J Nanosci Nanotechnol; 2012 Nov; 12(11):8475-80. PubMed ID: 23421233 [TBL] [Abstract][Full Text] [Related]
56. Self-assembly of hierarchical star-like Co3O4 micro/nanostructures and their application in lithium ion batteries. Li L; Seng KH; Chen Z; Guo Z; Liu HK Nanoscale; 2013 Mar; 5(5):1922-8. PubMed ID: 23354317 [TBL] [Abstract][Full Text] [Related]
57. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Yang Y; McDowell MT; Jackson A; Cha JJ; Hong SS; Cui Y Nano Lett; 2010 Apr; 10(4):1486-91. PubMed ID: 20184382 [TBL] [Abstract][Full Text] [Related]
58. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Chen S; Chen P; Wang Y Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120 [TBL] [Abstract][Full Text] [Related]
59. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries. Park J; Kim GP; Nam I; Park S; Yi J Nanotechnology; 2013 Jan; 24(2):025602. PubMed ID: 23220858 [TBL] [Abstract][Full Text] [Related]
60. Ultrathin Na1.1V3O7.9 nanobelts with superior performance as cathode materials for lithium-ion batteries. Liang S; Zhou J; Fang G; Liu J; Tang Y; Li X; Pan A ACS Appl Mater Interfaces; 2013 Sep; 5(17):8704-9. PubMed ID: 23947682 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]