These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22176708)

  • 1. Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines.
    Sartori M; Reggiani M; van den Bogert AJ; Lloyd DG
    J Biomech; 2012 Feb; 45(3):595-601. PubMed ID: 22176708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model.
    Menegaldo LL; de Toledo Fleury A; Weber HI
    J Biomech; 2004 Sep; 37(9):1447-53. PubMed ID: 15275854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Musculotendon lengths and moment arms for a three-dimensional upper-extremity model.
    Rankin JW; Neptune RR
    J Biomech; 2012 Jun; 45(9):1739-44. PubMed ID: 22520587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A validated combined musculotendon path and muscle-joint kinematics model for the human hand.
    Ma'touq J; Hu T; Haddadin S
    Comput Methods Biomech Biomed Engin; 2019 May; 22(7):727-739. PubMed ID: 30880463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibre operating lengths of human lower limb muscles during walking.
    Arnold EM; Delp SL
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1530-9. PubMed ID: 21502124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle.
    Hoy MG; Zajac FE; Gordon ME
    J Biomech; 1990; 23(2):157-69. PubMed ID: 2312520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional morphology of proximal hindlimb muscles in the frog Rana pipiens.
    Kargo WJ; Rome LC
    J Exp Biol; 2002 Jul; 205(Pt 14):1987-2004. PubMed ID: 12089205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Musculotendon Parameters in Lower Limb Models: Simplifications, Uncertainties, and Muscle Force Estimation Sensitivity.
    Chen Z; Franklin DW
    Ann Biomed Eng; 2023 Jun; 51(6):1147-1164. PubMed ID: 36913088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo determination of subject-specific musculotendon parameters: applications to the prime elbow flexors in normal and hemiparetic subjects.
    Koo TK; Mak AF; Hung LK
    Clin Biomech (Bristol, Avon); 2002 Jun; 17(5):390-9. PubMed ID: 12084544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of musculotendon properties in the human upper limb.
    Garner BA; Pandy MG
    Ann Biomed Eng; 2003 Feb; 31(2):207-20. PubMed ID: 12627828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry.
    Bosmans L; Valente G; Wesseling M; Van Campen A; De Groote F; De Schutter J; Jonkers I
    J Biomech; 2015 Jul; 48(10):2116-23. PubMed ID: 25979383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of electromyography-assisted modelling in estimating musculotendon forces during gait in children with cerebral palsy.
    Veerkamp K; Schallig W; Harlaar J; Pizzolato C; Carty CP; Lloyd DG; van der Krogt MM
    J Biomech; 2019 Jul; 92():45-53. PubMed ID: 31153626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximating complex musculoskeletal biomechanics using multidimensional autogenerating polynomials.
    Sobinov A; Boots MT; Gritsenko V; Fisher LE; Gaunt RA; Yakovenko S
    PLoS Comput Biol; 2020 Dec; 16(12):e1008350. PubMed ID: 33326417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automatic and Simplified Approach to Muscle Path Modeling.
    Livet C; Rouvier T; Dumont G; Pontonnier C
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34292317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Hill-type musculotendon models with activation-force-length coupling.
    Sun L; Sun Y; Huang Z; Hou J; Wu J
    Technol Health Care; 2018; 26(6):909-920. PubMed ID: 29914041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model.
    Charles JP; Cappellari O; Spence AJ; Wells DJ; Hutchinson JR
    J Anat; 2016 Oct; 229(4):514-35. PubMed ID: 27173448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joined effects of pennation angle and tendon compliance on fibre length in isometric contractions: a simulation study.
    Legreneur P; Morlon B; Van Hoecke J
    Arch Physiol Biochem; 1997 Sep; 105(5):450-5. PubMed ID: 9439782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Musculotendon translational stiffness and muscle activity are modified by shear forces.
    Cashaback JG; Fewster K; Potvin JR; Pierrynowski M
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):494-9. PubMed ID: 24802050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.